Skip to main content

Bioinformatics-Motivated Approach to Stereo Matching

  • Conference paper
Book cover Computer Vision, Imaging and Computer Graphics. Theory and Applications (VISIGRAPP 2011)

Abstract

We propose a framework for stereo matching that exploits the similarities between protein sequence alignment in bioinformatics and image pair correspondence in computer vision. This bioinformatics-motivated approach is based on dynamic programming, which provides versatility and low complexity. In addition, the protein alignment analogy inspired the design of a meaningfulness graph which predicts the validity of stereo matching according to image overlap and pixel similarity. Finally, we present a technique for automatic parameter estimation which makes our system suitable for uncontrolled environment. Experiments conducted on a standard benchmark dataset, image pairs with different resolutions and distorted images validate our approach and support the proposed analogy between computer vision and bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  2. Lazaros, N., Sirakoulis, G.C., Gasteratos, A.: Review of Stereo Vision Algorithms: From Software to Hardware. International Journal of Optomechatronics 2(4), 435–462 (2008)

    Article  Google Scholar 

  3. MacLean, W.J., Sabihuddin, S., Islam, J.: Leveraging cost matrix structure for hardware implementation of stereo disparity computation using dynamic programming. Computer Vision and Image Understanding (2010) (in press )

    Google Scholar 

  4. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  5. Baker, H., Binford, T.: Depth from edge and intensity based stereo. In: IJCAI, vol. 81, pp. 631–636 (1981)

    Google Scholar 

  6. Ohta, Y., Kanade, T.: Stereo by intra- and interscanline search using dynamic programming. IEEE TPAMI 7(2), 139–154 (1985)

    Article  Google Scholar 

  7. Geiger, D., Ladendorf, B., Yuille, A.: Occlusions and binocular stereo. In: European Conference on Computer Vision, pp. 425–433 (1992)

    Google Scholar 

  8. Belhumeur, P.N.: A Bayesian approach to binocular stereopsis. International Journal of Computer Vision 19(3), 237–260 (1996)

    Article  Google Scholar 

  9. Cox, I.J., Hingorani, S.L., Rao, S.B., Maggs, B.M.: A maximum likelihood stereo algorithm. Computer Vision and Image Understanding 63(3), 542–567 (1996)

    Article  Google Scholar 

  10. Torr, P.H.S., Criminisi, A.: Dense stereo using pivoted dynamic programming. Image and Vision Computing 22(10), 795–806 (2004)

    Article  Google Scholar 

  11. Bobick, A.F., Intille, S.S.: Large occlusion stereo. International Journal of Computer Vision 33(3), 181–200 (1999)

    Article  Google Scholar 

  12. Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: Computer Vision and Pattern Recognition, San Diego, CA, USA (2005)

    Google Scholar 

  13. Deng, Y., Lin, X.: A Fast Line Segment Based Dense Stereo Algorithm Using Tree Dynamic Programming. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 201–212. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Forstmann, S., Kanou, Y., Ohya, J., Thuering, S., Schmitt, A.: Real-Time Stereo by using Dynamic Programming. In: Computer Vision and Pattern Recognition Workshop, Washington, DC, USA (2004)

    Google Scholar 

  15. Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: 3D Data Processing, Visualization and Transmission, Chapel Hill, USA (2006)

    Google Scholar 

  16. Salmen, J., Schlipsing, M., Edelbrunner, J., Hegemann, S., Lueke, S.: Real-time stereo vision: making more out of dynamic programming. In: International Conference on Computer Analysis of Images and Patterns, Münster, Germany (2009)

    Google Scholar 

  17. Dayhoff, M.O., Eck, R.V., Chang, M.A., Sochard, M.R.: Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Silver Spring, Maryland (1965)

    Google Scholar 

  18. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)

    Article  Google Scholar 

  19. Mackey, A.J., Haystead, T.A., Pearson, W.R.: Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Molecular and Cellular Proteomics 1(2), 139–147 (2002)

    Article  Google Scholar 

  20. Leinonen, R., Diez, F.G., Binns, D., Fleischmann, W., Lopez, R., Apweiler, R.: UniProt Archive. Bioinformatics 20, 3236–3237 (2004)

    Article  Google Scholar 

  21. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences 89, 10915–10919 (1992)

    Article  Google Scholar 

  22. Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680 (1994)

    Article  Google Scholar 

  23. Notredame, C., Higgins, D., Heringa, J.: T-Coffee: A novel method for multiple sequence alignments. Journal of Molecular Biology 302, 205–217 (2000)

    Article  Google Scholar 

  24. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004)

    Article  Google Scholar 

  25. Lassmann, T., Sonnhammer, E.L.L.: Kalign - an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6, 298 (2005)

    Article  Google Scholar 

  26. Karlin, S., Altschul, S.F.: Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences 87, 2264–2268 (1990)

    Article  MATH  Google Scholar 

  27. Pearson, W.R.: Empirical statistical estimates for sequence similarity searches. Journal of Molecular Biology 276, 71–84 (1998)

    Article  Google Scholar 

  28. Rost, B.: Twilight zone of protein sequence alignments. Protein Engineering 12(2), 85–94 (1999)

    Article  MathSciNet  Google Scholar 

  29. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202 (2003)

    Google Scholar 

  30. Mühlmann, K., Maier, D., Hesser, J., Männer, R.: Calculating Dense Disparity Maps From Color Stereo Images, An Efficient Implementation. International Journal of Computer Vision 47(3), 78–88 (2002)

    Article  Google Scholar 

  31. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR, vol. 3, pp. 15–18 (2006)

    Google Scholar 

  32. Dayhoff, M.O.: Atlas of Protein Sequence and Structure. Suppl. 3, National Biomedical Research Foundation, Silver Spring, Maryland (1978)

    Google Scholar 

  33. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinez-del-Rincon, J., Thevenon, J., Dieny, R., Nebel, JC. (2013). Bioinformatics-Motivated Approach to Stereo Matching. In: Csurka, G., Kraus, M., Mestetskiy, L., Richard, P., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics. Theory and Applications. VISIGRAPP 2011. Communications in Computer and Information Science, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32350-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32350-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32349-2

  • Online ISBN: 978-3-642-32350-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics