Skip to main content

Machine Learning as a Preprocessing Phase in Discrete Tomography

  • Conference paper
  • 725 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7346))

Abstract

In this paper we investigate for two well-known machine learning methods, decision trees and neural networks, how they classify discrete images from their projections. As an example, we present classification results when the task is to guess the number of intensity values of the discrete image. Machine learning can be used in Discrete Tomography as a preprocessing step in order to choose the proper reconstruction algorithm or – with the aid of the knowledge acquired – to improve its accuracy. We also show how to design new evolutionary reconstruction methods that can exploit the information gained by machine learning classifiers.

This research was supported by the TÁMOP-4.2.2/08/1/2008-0008 program of the Hungarian National Development Agency, the European Union and the European Regional Development Fund. The work of M. Gara was also is supported by the European Union and co-funded by the European Social Fund under the project number TÁMOP-4.2.2/B-10/1-2010-0012. The work of P. Balázs was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the Hungarian Scientific Research Fund OTKA PD100950.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T., Fogel, D.B., Michalewicz, T. (eds.): Evolutionary Computation 1. Institute of Physics Publishing, Bristol and Philadelphia (2000)

    MATH  Google Scholar 

  2. Balázs, P.: Binary Tomography Using Geometrical Priors: Uniqueness and Reconstruction Results. PhD thesis at the University of Szeged, Szeged (2007), http://www.inf.u-szeged.hu/~pbalazs/research/bp_thesis_main.pdf

  3. Balázs, P., Balogh, E., Kuba, A.: Reconstruction of 8-connected but not 4-connected hv-convex discrete sets. Disc. Appl. Math. 147, 149–168 (2005)

    Article  MATH  Google Scholar 

  4. Balázs, P., Gara, M.: Decision Trees in Binary Tomography for Supporting the Reconstruction of hv-Convex Connected Images. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 433–443. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Balázs, P., Gara, M.: An Evolutionary Approach for Object-Based Image Reconstruction Using Learnt Priors. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 520–529. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Balogh, E., Kuba, A., Dévényi, C., Del Lungo, A.: Comparison of algorithms for reconstructing hv-convex discrete sets. Lin. Algebra and its Applications 339, 23–35 (2001)

    Article  MATH  Google Scholar 

  7. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Medians of polyominoes: A property for the reconstruction. Int. J. Imaging Systems and Techn. 9, 69–77 (1998)

    Article  Google Scholar 

  8. Batenburg, K.J.: An evolutionary algorithm for discrete tomography. Discrete Appl. Math. 151, 36–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Batenburg, K.J., Bals, S., Sijbers, J., Kuebel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A., Van Tendeloo, G.: 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109(6), 730–740 (2009)

    Article  Google Scholar 

  10. Batenburg, K.J., Kosters, W.A.: A Neural Network Approach to Real-Time Discrete Tomography. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 389–403. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Batenburg, K.J., Van Aarle, W., Sijbers, J.: A semi-automatic algorithm for grey level estimation in tomography. Pattern Recognition Letters 32, 1395–1405 (2011)

    Article  Google Scholar 

  12. Baumann, J., Kiss, Z., Krimmel, S., Kuba, A., Nagy, A., Rodek, L., Schillinger, B., Stephan, J.: Discrete tomography methods for nondestructive testing. In: [21], pp. 303–331 (2007)

    Google Scholar 

  13. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304, 35–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction of 4- and 8-connected convex discrete sets from row and column projections. Lin. Alg. Appl. 339, 37–57 (2001)

    Article  MATH  Google Scholar 

  15. Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: A Tomographical Characterization of L-Convex Polyominoes. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 115–125. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett. 69(6), 283–289 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gara, M., Tasi, T.S., Balázs, P.: Learning connectedness and convexity of binary images from their projections. Pure Math. and Appl. 20, 27–48 (2009)

    Google Scholar 

  18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  19. Herman, G.T.: Fundamentals of Computerized Tomography: Image reconstruction from projections. Springer, Heidelberg (2009)

    Google Scholar 

  20. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  21. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and its Applications. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  22. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1999)

    Google Scholar 

  23. Kiss, Z., Rodek, L., Kuba, A.: Image reconstruction and correction methods in neutron and X-ray tomography. Acta Cybernetica 17(3), 557–587 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Kuba, A., Ruskó, L., Kiss, Z., Nagy, A.: Discrete Reconstruction Techniques. Electronic Notes in Discrete Math. 20, 385–398 (2005)

    Article  Google Scholar 

  25. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  26. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  27. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  28. Valenti, C.: A genetic algorithm for discrete tomography reconstruction. Genet. Program Evolvable Mach. 9, 85–96 (2008)

    Article  Google Scholar 

  29. Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G.: Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gara, M., Tasi, T.S., Balázs, P. (2012). Machine Learning as a Preprocessing Phase in Discrete Tomography. In: Köthe, U., Montanvert, A., Soille, P. (eds) Applications of Discrete Geometry and Mathematical Morphology. WADGMM 2010. Lecture Notes in Computer Science, vol 7346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32313-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32313-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32312-6

  • Online ISBN: 978-3-642-32313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics