Skip to main content

Digital Shape Analysis with Maximal Segments

  • Conference paper
Applications of Discrete Geometry and Mathematical Morphology (WADGMM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7346))

Abstract

We show in this paper how a digital shape can be efficiently analyzed through the maximal segments defined along its digital contour. They are efficiently computable. They can be used to prove the multigrid convergence of several geometric estimators. Their asymptotic properties can be used to estimate the local amount of noise along the shape, through a multiscale analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Proc. 7th Symp. on Computational Geometry (SCG 1991), pp. 162–165. ACM Press (1991)

    Google Scholar 

  2. Bruckstein, A.M.: The self-similarity of digital straight lines. In: Proc. 10th Int. Conf. Pattern Recognition (ICPR 1990), Atlantic City, NJ, vol. 1, pp. 485–490 (1990)

    Google Scholar 

  3. Coeurjolly, D.: Algorithmique et géométrie pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lyon 2 (December 2002)

    Google Scholar 

  4. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)

    Article  Google Scholar 

  5. de Vieilleville, F.: Analyse des parties linaires des objets discrets et estimateurs de caractristiques gomtriques. PhD thesis, Université Bordeaux 1, Talence, France (April 2007)

    Google Scholar 

  6. de Vieilleville, F., Lachaud, J.-O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recognition 42(8), 1693–1707 (2009)

    Article  MATH  Google Scholar 

  7. de Vieilleville, F., Lachaud, J.-O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. Journal of Mathematical Image and Vision 27(2), 471–502 (2007)

    Google Scholar 

  8. Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of discrete curves. Int. Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)

    Article  Google Scholar 

  9. Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 145–160. Springer (2006)

    Google Scholar 

  10. Esbelin, H.-A., Malgouyres, R.: Convergence of Binomial-Based Derivative Estimation for C 2 Noisy Discretized Curves. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 57–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Feschet, F.: Canonical representations of discrete curves. Pattern Analysis & Applications 8(1), 84–94 (2005)

    Article  MathSciNet  Google Scholar 

  12. Feschet, F., Tougne, L.: Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Gross, A., Latecki, L.: Digitizations preserving topological and differential geometric properties. Comput. Vis. Image Underst. 62(3), 370–381 (1995)

    Article  Google Scholar 

  14. Huxley, M.N.: Exponential sums and lattice points. Proc. London Math. Soc. 60, 471–502 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kerautret, B., Lachaud, J.-O.: Multi-scale Analysis of Discrete Contours for Unsupervised Noise Detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kerautret, B., Lachaud, J.-O.: Meaningful scales online demonstration (2010), http://kerrecherche.iutsd.uhp-nancy.fr/MeaningfulBoxes

  17. Kerautret, B., Lachaud, J.-O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Transaction on Pattern Analysis and Machine Intelligence (accepted, to appear, 2012)

    Google Scholar 

  18. Klette, R., Rosenfeld, A.: Digital straightness – a review. Discrete Applied Mathematics 139(1-3), 197–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    MATH  Google Scholar 

  20. Lachaud, J.-O.: Espaces non-euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à Diriger des Recherches, Université Bordeaux 1, Talence, France (2006)

    Google Scholar 

  21. Lachaud, J.-O., Provençal, X.: Two linear-time algorithms for computing the minimum length polygon of a digital contour. Discrete Applied Mathematics 159(18), 2229–2250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  23. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. Journal of Mathematical Imaging and Vision 8(2), 131–159 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Provençal, X., Lachaud, J.-O.: Two Linear-Time Algorithms for Computing the Minimum Length Polygon of a Digital Contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg, France (1991)

    Google Scholar 

  26. Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recognition 44(10-11), 2693–2700 (2011)

    Article  MATH  Google Scholar 

  27. Sloboda, F., Zaťko, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Advances in Digital and Computational Geometry, pp. 113–160 (1998)

    Google Scholar 

  28. Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. In: Melter, R.A., Rosenfeld, A., Bhattacharya, P. (eds.) Vision Geometry: Proc. AMS Special Session, October 20-21, 1989, vol. 119, pp. 169–195. American Mathematical Society, Hoboken (1991)

    Google Scholar 

  29. Voss, K.: Discrete Images, Objects, and Functions in ℤn. Springer (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lachaud, JO. (2012). Digital Shape Analysis with Maximal Segments. In: Köthe, U., Montanvert, A., Soille, P. (eds) Applications of Discrete Geometry and Mathematical Morphology. WADGMM 2010. Lecture Notes in Computer Science, vol 7346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32313-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32313-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32312-6

  • Online ISBN: 978-3-642-32313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics