Skip to main content

DAA Protocol Analysis and Verification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7222))

Abstract

Direct Anonymous Attestation (DAA) is a popular trusted computing protocol for the anonymous authentication designed for TPM or other embedding devices. Many DAA schemes give out detailed cryptographic proof, however, their security properties has not been yet automatically analyzed and verified particularly against the intruder’s or the malicious participant’s attack. It is proposed that a DAA analysis model focusing on the intruder’s attacks in this paper. The analysis method is the good supplements to the DAA cryptographic proof, though the intruder’s capability is not completely assumed. According to DAA protocol status analysis, we find out some attacks like rudolph attack, masquerading attack by using the Murphi tool. At last the paper gives out the reasons for these attacks, and also presents the recommendation solutions against these attacks. From our study, we propose that DAA protocol must be carefully analyzed from the intruder attacking point of view in the DAA system design and implementation.

* This paper is supported by the National Natural Science Foundation of China under Grant No.91118006 and The Knowledge Innovation Project of Chinese Academy of Science (ISCAS2009-DR14).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay attack in TCG specification and solution. In: Proceeding of 21st Annual Computer Security Applications Conference (ACSAC 2005), pp. 127–137. IEEE Computer Society (2005)

    Google Scholar 

  2. Chen, L., Ryan, M.D.: Offline dictionary attack on TCG TPM weak authorisation data, and solution. In: Future of Trust in Computing. Vieweg & Teubner (2008)

    Google Scholar 

  3. Chen, L., Ryan, M.: Attack, Solution and Verification for Shared Authorisation Data in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 201–216. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Amerson, H.L.: Automated Analysis of Security APIs. Massachusetts Institute of Technology, USA (2005)

    Google Scholar 

  5. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A Formal Analysis of Authentication in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 111–125. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Backes, M., Maffei, M., Unruh, D.: Zero-Knowledge in the Applied Pi-calculus and Automated Verification of the Direct Anonymous Attestation Protocol. In: Proceedings of the 2008 IEEE Symposium on Security and Privacy (SP 2008), pp. 202–215. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  7. Backes, M., Hriţcu, C., Maffei, M.: Type-checking zero-knowledge. In: Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS 2008), pp. 357–370. ACM, New York (2008)

    Chapter  Google Scholar 

  8. Murphi, http://verify.stanford.edu/dill/murphi.html

  9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, pp. 132–145 (2004)

    Google Scholar 

  10. Brickell, E., Li, J.: Enhanced privacy id: a direct anonymous attestation scheme with enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop on Privacy in the Electronic Society (WPES 2007), pp. 21–30 (2007)

    Google Scholar 

  11. Ge, H., Tate, S.R.: A Direct Anonymous Attestation Scheme for Embedded Devices. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 16–30. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Feng, D., Xu, J., Chen, X.: A Forward Secure Direct Anonymous Attestation Scheme. In: WSEAS ACC 2009 (2009)

    Google Scholar 

  13. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from Bilinear Maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Brickell E., Li, J.: Enhanced Privacy ID from Bilinear Pairing. Cryptology ePrint Archive, Report 2009/095 (2009), http://eprint.iacr.org/2009/095.pdf

  15. Rudolph, C.: Covert Identity Information in Direct Anonymous Attestation (DAA). In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.) SEC 2007. IFIP, vol. 232, pp. 443–448. Springer, Boston (2007)

    Google Scholar 

  16. Leung, A., Chen, L., Mitchell, C.J.: On a Possible Privacy Flaw in Direct Anonymous Attestation (DAA). In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 179–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, Y., Chu, X., Feng, D., Feng, W. (2012). DAA Protocol Analysis and Verification. In: Chen, L., Yung, M., Zhu, L. (eds) Trusted Systems. INTRUST 2011. Lecture Notes in Computer Science, vol 7222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32298-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32298-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32297-6

  • Online ISBN: 978-3-642-32298-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics