Efficient Threshold Zero-Knowledge with Applications to User-Centric Protocols
- 3 Citations
- 538 Downloads
Abstract
In this paper, we investigate on threshold proofs, a framework for distributing the prover’s side of interactive proofs of knowledge over multiple parties. Interactive proofs of knowledge (PoK) are widely used primitives of cryptographic protocols, including important user-centric protocols, such as identification schemes, electronic cash (e-cash), and anonymous credentials.
We present a security model for threshold proofs of knowledge and develop threshold versions of well-known primitives such as range proofs, zero-knowledge proofs for preimages of homomorphisms (which generalizes PoKs of discrete logarithms, representations, p-th roots, etc.), as well as OR statements. These building blocks are proven secure in our model.
Furthermore, we apply the developed primitives and techniques in the context of user-centric protocols. In particular, we construct distributed-user variants of Brands’ e-cash system and the bilinear anonymous credential scheme by Camenisch and Lysyanskaya. Distributing the user party in such protocols has several practical advantages: First, the security of a user can be increased by sharing secrets and computations over multiple devices owned by the user. In this way, losing control of a single device does not result in a security breach. Second, this approach also allows groups of users to jointly control an application (e.g., a joint e-cash account), not giving a single user full control.
The distributed versions of the protocols we propose in this paper are relatively efficient (when compared to a general MPC approach). In comparison to the original protocols only the prover’s (or user’s) side is modified while the other side stays untouched. In particular, it is oblivious to the other party whether it interacts with a distributed prover (or user) or one as defined in the original protocol.
Keywords
Multiparty computation threshold cryptography distributed provers Σ-protocols e-cash anonymous credentialsPreview
Unable to display preview. Download preview PDF.
References
- 1.Almansa, J.F., Damgård, I., Nielsen, J.B.: Simplified Threshold RSA with Adaptive and Proactive Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 593–611. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 2.Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10. ACM (1988)Google Scholar
- 3.Blum, M.: How to prove a theorem so no one else can claim it. In: Gleason, A.M. (ed.) Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
- 4.Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 5.Brands, S.: Untraceable Off-Line Cash in Wallets with Observers (Extended Abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)Google Scholar
- 6.Camenisch, J.L., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 7.Camenisch, J.L., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
- 8.Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203 (1982)Google Scholar
- 9.Chaum, D.: Security without identification: Transaction systems to make big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)CrossRefGoogle Scholar
- 10.Cramer, R., Damgård, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 11.Cramer, R., Damgård, I., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
- 12.Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient Multi-party Computation Over Rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 13.Damgård, I.: On Σ-protocols, Course Notes. Aarhus University (2010)Google Scholar
- 14.Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 15.Damgård, I., Koprowski, M.: Practical Threshold RSA Signatures without a Trusted Dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 16.Damgård, I., Mikkelsen, G.L.: On the Theory and Practice of Personal Digital Signatures. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 277–296. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 17.Desmedt, Y.: Threshold Crypto Systems (Invited Talk). In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 3–14. Springer, Heidelberg (1993)Google Scholar
- 18.Desmedt, Y., Di Crescenzo, G., Burmester, M.: Multiplicative Non-Abelian Sharing Schemes and Their Application to Threshold Cryptography. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 21–32. Springer, Heidelberg (1995)Google Scholar
- 19.Desmedt, Y.G., Frankel, Y.: Shared Generation of Authenticators and Signatures. In: Feigenbaum, J. (ed.) [22], pp. 457–469Google Scholar
- 20.Dodis, Y., Shoup, V., Walfish, S.: Efficient Constructions of Composable Commitments and Zero-Knowledge Proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008)Google Scholar
- 21.Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426. ACM (1990)Google Scholar
- 22.Feigenbaum, J. (ed.): CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)zbMATHGoogle Scholar
- 23.Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
- 24.Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
- 25.Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. J. Cryptology 19(2), 169–209 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of RSA functions. J. Cryptology 13(2), 273–300 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
- 28.Keller, M., Mikkelsen, G., Rupp, A.: Efficient threshold zero-knowledge with applications to user-centric protocols (full paper) (2012), Manuscript to be published at http://eprint.iacr.org/2012/306
- 29.Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 30.Lysyanskaya, A.: Signature Schemes and Applications to Cryptographic Protocol Design. Ph.D. thesis. Massachusetts Institute of Technology (2002)Google Scholar
- 31.Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 32.Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
- 33.Pedersen, T.P.: Distributed Provers with Applications to Undeniable Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer, Heidelberg (1991)Google Scholar
- 34.Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) [22], pp. 129–140Google Scholar
- 35.Rabin, T.: A Simplified Approach to Threshold and Proactive RSA. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)Google Scholar
- 36.Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
- 37.Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Simoens, K., Peeters, R., Preneel, B.: Increased Resilience in Threshold Cryptography: Sharing a Secret with Devices That Cannot Store Shares. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 116–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar