Optimum General Threshold Secret Sharing

  • Maki Yoshida
  • Toru Fujiwara
  • Marc Fossorier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7412)


An important issue of threshold secret sharing (TSS) schemes is to minimize the size of shares. This issue is resolved for the simpler classes called (k,n)-TSS and (k,L,n)-threshold ramp secret sharing (TRSS). That is, for each of these two classes, an optimum construction which minimizes the share size was presented. The goal of this paper is to develop an optimum construction for a more general threshold class where the mutual information between the secret and a set of shares is defined by a discrete function which monotonically increases from zero to one with the number of shares. A tight lower bound of the entropy of shares is first derived and then an optimum construction is presented. The derived lower bound is larger than the previous one except for special functions such as convex and concave functions. The optimum construction encodes the secret by using one or more optimum TRSS schemes independently. The optimality is shown by devising a combination of TRSS schemes which achieves the new lower bound.


Leakage Rate Secret Sharing Scheme Local Minimum Point Local Maximum Point Threshold Secret Sharing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, L.: A strong ramp secret sharing scheme using matrix projection. In: The 2006 Int’l Symp. on a World of Wireless, Mobile and Multimedia Networks, pp. 652–656 (2006)Google Scholar
  2. 2.
    Beimel, A.: Secret-Sharing Schemes: A Survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Orlov, I.: Secret sharing and non-Shannon information inequalities. IEEE Trans. on Information Theory 57, 5634–5649 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 Nat. Comput. Conf. vol. 48, pp. 313–317 (1979)Google Scholar
  5. 5.
    Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  6. 6.
    Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for secret sharing schemes. J. of Cryptology 6, 157–168 (1993)zbMATHCrossRefGoogle Scholar
  7. 7.
    Csirmaz, L.: The size of a share must be large. J. of Cryptology 10, 223–231 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Iwamoto, M., Yamamoto, H.: Strongly secure ramp secret sharing schemes for general access structures. Inform. Processing Letters 97, 52–57 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. on Information Theory 29, 35–41 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kurosawa, K., Okada, K., Sakano, K., Ogata, W., Tsujii, S.: Nonperfect Secret Sharing Schemes and Matroids. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 126–141. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Okada, K., Kurosawa, K.: Lower Bound on the Size of Shares of Nonperfect Secret Sharing Schemes. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 34–41. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Shamir, A.: How to share a secret. Comm. of the ACM 22, 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Yamamoto, H.: On secret sharing systems using (k,L,n) threshold scheme. IECE Trans. J68-A, 945–952 (1985) (in Japanese). English transl.: Electron. Comm. Japan Part I. 69, 46–54 (1986) Google Scholar
  14. 14.
    Yoneyama, K., Kunihiro, N., Santoso, B., Ohta, K.: Non-linear function ramp scheme. In: The 2004 Int’l Symp. on Inform. Theory and its Appli., pp. 788–793 (2004)Google Scholar
  15. 15.
    Yoshida, M., Fujiwara, T.: A secure construction for the nonlinear function threshold ramp secret sharing scheme. In: The 2007 Int’l Symp. on Inform. Theory, CD-ROM (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maki Yoshida
    • 1
  • Toru Fujiwara
    • 1
  • Marc Fossorier
    • 2
  1. 1.Osaka UniversitySuitaJapan
  2. 2.ETIS, ENSEA/UCP/CNRS UMR-8051Cergy-PontoiseFrance

Personalised recommendations