Skip to main content

Combinatorial Applications

  • Chapter
  • 8013 Accesses

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 5))

Abstract

In this chapter, we use the theorems of Ford and Fulkerson about maximal ows to prove some central results in combinatorics. More precisely, we will use ow theory to study disjoint paths in graphs, matchings in bipartite graphs, transversals of set families, the combinatorics of matrices, partitions of directed graphs, partially ordered sets, parallelisms of complete designs, and the supply and demand theorem. In particular, transversal theory can be developed from the theory of ows on networks; this approach was first suggested in 1962 in the book by Ford and Fulkerson. Compared with the usual alternative approach of taking Philip Hall’s marriage theorem—which we will treat in Sect. 7.3—as the starting point of transversal theory, this way of proceeding has a distinct advantage: it also yields algorithms allowing explicit constructions for the objects in question.

Everything flows.

Heraclitus

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For more on network reliability, we recommend [Col87].

  2. 2.

    Quite often, this result is stated in the language of matrices instead; see Theorem 7.4.1 below.

  3. 3.

    This theorem is likewise often stated in different language; see Theorem 7.3.1.

  4. 4.

    For an intuitive interpretation, we might think of the A i as certain groups of people who each send a representative a i into a committee. Then the SDR property means that no committee member is allowed to represent more than one group, and the transversal {a 1,…,a n } just is the committee. Another interpretation will be given below, after Theorem 7.3.1.

  5. 5.

    Of course, we might as well choose the edges in CM T .

  6. 6.

    A strong generalization of Theorem 7.4.5 is proved in [LewLL86].

  7. 7.

    Note that this function differs from the determinant of A only by the signs of the terms appearing in the sum. Although there exist efficient algorithms for computing determinants, evaluating the permanent of a matrix is NP-hard by a celebrated result of Valiant [Val79a].

  8. 8.

    This problem was generalized by Gabow and Tarjan, [GabTa88] who also gave an algorithm with complexity O((|V|log|V|)1/2|E|). For our classical special case, this yields a complexity of O((log|V|)1/2|V|5/2).

  9. 9.

    Note that independent sets are the vertex analogue of matchings, which may be viewed as independent sets of edges; hence the notation α′(G) in Sect. 7.2 for the maximal cardinality of a matching.

  10. 10.

    However, the reverse inequality does not hold for this more general case, as the example in Fig. 7.3 shows.

  11. 11.

    The term tournament becomes clear by considering a competition where there are no draws: for example, tennis. Assume that each of n players (or teams, as the case may be) plays against every other one, and that the edge {i,j} is oriented as ij if i wins against j. Then an orientation of K n indeed represents the outcome of a (complete) tournament.

  12. 12.

    A somewhat more general problem will be the subject of Chap. 11.

References

  1. Aigner, M.: Combinatorial Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  2. Baker, R.D., Wilson, R.M.: Nearly Kirkman triple systems. Util. Math. 11, 289–296 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Baranyai, Z.: On the factorization of the complete uniform hypergraph. In: Proc. Erdős-Koll., Keszthely, 1973, pp. 91–108. North Holland, Amsterdam (1975)

    Google Scholar 

  4. Beth, T.: Algebraische Auflösungsalgorithmen für einige unendliche Familien von 3–Designs. Matematiche 29, 105–135 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. vols. 1 and 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  6. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Rev. Univ. Nac. Tucumán Ser. A 5, 147–151 (1946)

    MathSciNet  MATH  Google Scholar 

  7. Bosák, J.: Decompositions of Graphs. Kluwer Academic, Dordrecht (1990)

    MATH  Google Scholar 

  8. Cameron, P.J.: Parallelisms of Complete Designs. Cambridge University Press, Cambridge (1976)

    Book  MATH  Google Scholar 

  9. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, Oxford (1987)

    Google Scholar 

  10. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edmonds, J., Fulkerson, D.R.: Transversals and matroid partition. J. Res. Natl. Bur. Stand. B 69, 147–153 (1965)

    MathSciNet  MATH  Google Scholar 

  12. Egerváry, E.: Matrixok kombinatorius tulajdonságairól. Mat. Fiz. Lapok 38, 16–28 (1931)

    MATH  Google Scholar 

  13. Egoritsjev, G.E.: Solution of van der Waerden’s permanent conjecture. Adv. Math. 42, 299–305 (1981)

    Article  Google Scholar 

  14. Elias, P., Feinstein, A., Shannon, C.E.: Note on maximum flow through a network. IRE Trans. Inf. Theory IT-12, 117–119 (1956)

    Article  Google Scholar 

  15. Engel, K.: Sperner Theory. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  17. Falikman, D.I.: Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix. Math. Notes - Ross. Akad. 29, 475–479 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Farahat, H.K., Mirsky, L.: Permutation endomorphisms and a refinement of a theorem of Birkhoff. Proc. Camb. Philos. Soc. 56, 322–328 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ford, L.R., Fulkerson, D.R.: Network flow and systems of representatives. Can. J. Math. 10, 78–84 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  22. Frobenius, G.: Über Matrizen aus nicht negativen Elementen. Sitz.ber. Preuss. Akad. Wiss. 1912, 456–477 (1912)

    Google Scholar 

  23. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Am. Math. Soc. 7, 701–702 (1956)

    MathSciNet  MATH  Google Scholar 

  24. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. J. Algorithms 9, 411–417 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gale, D.: A theorem on flows in networks. Pac. J. Math. 7, 1073–1082 (1957)

    MathSciNet  MATH  Google Scholar 

  26. Gallai, T., Milgram, A.N.: Verallgemeinerung eines graphentheoretischen Satzes von Redéi. Acta Sci. Math. 21, 181–186 (1960)

    MathSciNet  MATH  Google Scholar 

  27. Greene, R.C., Kleitman, D.J.: Proof techniques in the theory of finite sets. In: Rota, G.C. (ed.) Studies in Combinatorics, pp. 22–79. Math. Assoc. America, Washington (1978)

    Google Scholar 

  28. Griggs, J.R.: Saturated chains of subsets and a random walk. J. Comb. Theory, Ser. A 47, 262–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hall, M.: An algorithm for distinct representatives. Am. Math. Mon. 63, 716–717 (1956)

    Article  MATH  Google Scholar 

  30. Hall, M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)

    MATH  Google Scholar 

  31. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)

    Article  Google Scholar 

  32. Halmos, P.R., Vaughan, H.E.: The marriage problem. Am. J. Math. 72, 214–215 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hoffman, A.J., Kuhn, H.W.: On systems of distinct representatives. Ann. Math. Stud. 38, 199–206 (1956)

    MathSciNet  MATH  Google Scholar 

  34. Huang, C., Mendelsohn, E., Rosa, A.: On partially resolvable t-partitions. Ann. Discrete Math. 12, 160–183 (1982)

    Google Scholar 

  35. Jungnickel, D.: A construction of group divisible designs. J. Stat. Plan. Inference 3, 273–278 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jungnickel, D.: Die Methode der Hilfsmatrizen. In: Tölke, J., Wills, J.M. (eds.) Contributions to Geometry, pp. 388–394. Birkhäuser, Basel (1979)

    Google Scholar 

  37. Jungnickel, D.: Transversaltheorie: Ein Überblick. Bayreuth. Math. Schr. 21, 122–155 (1986)

    MathSciNet  MATH  Google Scholar 

  38. Jungnickel, D., Lenz, H.: Minimal linear spaces. J. Comb. Theory, Ser. A 44, 229–240 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kirkman, T.P.: Query VI. Lady’s Gentlem. Diary 147, 48 (1850)

    Google Scholar 

  40. Knuth, D.E.: A permanent inequality. Am. Math. Mon. 88, 731–740 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. König, D.: Über Graphen und ihre Anwendungen auf Determinantentheorie und Mengenlehre. Math. Ann. 77, 453–465 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  42. König, D.: Graphen und Matrizen. Mat. Fiz. Lapok 38, 116–119 (1931) (Hungarian with a summary in German)

    MATH  Google Scholar 

  43. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)

    Article  Google Scholar 

  44. Lewandowski, J.L., Liu, C.L., Liu, J.W.S.: An algorithmic proof of a generalization of the Birkhoff-Von Neumann theorem. J. Algorithms 7, 323–330 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Marcus, M., Minc, H.: Diagonal products in doubly stochastic matrices. Q. J. Math. 16, 32–34 (1965)

    MathSciNet  MATH  Google Scholar 

  46. Marcus, M., Ree, R.: Diagonals of doubly stochastic matrices. Q. J. Math. 10, 296–302 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mendelsohn, N.S., Dulmage, A.L.: Some generalizations of the problem of distinct representatives. Can. J. Math. 10, 230–241 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  48. Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10, 96–115 (1927)

    MATH  Google Scholar 

  49. Miller, G.A.: On a method due to Galois. Q. J. Pure Appl. Math. 41, 382–384 (1910)

    MATH  Google Scholar 

  50. Minc, H.: Permanents. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  51. Minc, H.: Nonnegative Matrices. Wiley, New York (1988)

    MATH  Google Scholar 

  52. Mirsky, L.: Hall’s criterion as a ‘self-refining’ result. Monatshefte Math. 73, 139–146 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mirsky, L.: Transversal theory and the study of abstract independence. J. Math. Anal. Appl. 25, 209–217 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mirsky, L.: A dual of Dilworth’s decomposition theorem. Am. Math. Mon. 78, 876–877 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mirsky, L.: Transversal Theory. Academic Press, New York (1971)

    MATH  Google Scholar 

  56. Mirsky, L., Perfect, H.: Applications of the notion of independence to problems of combinatorial analysis. J. Comb. Theory 2, 327–357 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ore, O.: Graphs and matching theorems. Duke Math. J. 22, 625–639 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  58. Peltesohn, R.: Das Turnierproblem für Spiele zu je dreien. Dissertation, Universität Berlin (1936)

    Google Scholar 

  59. Petersen, J.: Die Theorie der regulären Graphen. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rado, R.: A theorem on independence relations. Q. J. Math. 13, 83–89 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ray-Chaudhuri, D.K., Wilson, R.M.: Solution of Kirkman’s school girl problem. In: Proc. Symp. Pure Appl. Math., vol. 19, pp. 187–203. Am. Math. Soc., Providence (1971)

    Google Scholar 

  62. Redéi, L.: Ein kombinatorischer Satz. Acta Univ. Szeged., Sect. Litt. 7, 39–43 (1934)

    Google Scholar 

  63. Rees, R.: Uniformly resolvable pairwise balanced designs with block sizes two and three. J. Comb. Theory, Ser. A 45, 207–225 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. Rizzi, R.: A short proof of König’s matching theorem. J. Graph Theory 33, 138–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, 544–548 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  67. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  68. van der Waerden, B.L.: Aufgabe 45. Jahresber. DMV 117 (1926)

    Google Scholar 

  69. van der Waerden, B.L.: Ein Satz über Klasseneinteilungen von endlichen Mengen. Abh. Math. Semin. Univ. Hamb. 5, 185–188 (1927)

    Article  MATH  Google Scholar 

  70. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  71. Wallis, W.D.: One-Factorizations. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  72. Welsh, D.J.A.: Matroid Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  73. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungnickel, D. (2013). Combinatorial Applications. In: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32278-5_7

Download citation

Publish with us

Policies and ethics