Advertisement

Lemaître’s Prescience: The Beginning and End of the Cosmos

  • Bernard Carr
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 395)

Abstract

Lemaître anticipated what are now assumed to be the most plausible models for both the beginning and the end of cosmos. He was also prescient in forging a link between microphysics and macrophysics, a process which is only culminating today, and his solutions with a cosmological constant provide a particularly interesting version of the modern-day multiverse scenario. Although some of his ideas were at first regarded sceptically by mainstream physics, their later reception illustrates that the boundary between cosmology and meta-cosmology is always evolving. He was generally reluctant to link cosmological and theological ideas but I will argue that cosmology offers some scope for productive science-religion dialogue and suggest that mind may be a fundamental rather than incidental feature of the universe.

Keywords

Black Hole Large Hadron Collider Cosmological Constant Extra Dimension Grand Unify Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrams, N. E. & Primack, J. (2011). The new universe and the human future. Yale: Yale University Press.Google Scholar
  2. Alpher, R. A., & Hermann, R. (1988). Reflections on early work on big bang cosmology. Physics Today, 41, 24–34.CrossRefGoogle Scholar
  3. Barrow, J. D., & Tipler, F. (1986). The anthropic cosmological principle. Oxford: Oxford University Press.Google Scholar
  4. Block, D. (2011). A Hubble eclipse: Lemaître and censorship. arxiv:1106.3928; this volume.Google Scholar
  5. Bousso, R., & Polchinksi, J. (2000). Quantization of four-form fluxes and dynamical neutralization of the cosmological constant. Journal of High Energy Physics, 06, 006.ADSCrossRefGoogle Scholar
  6. Carr, B. J. (2007). Universe or multiverse? Cambridge: Cambridge University Press.Google Scholar
  7. Carr, B. J., & Ellis, G. F. R. (2008). Universe or multiverse? Astronomy and Geophysics, 49, 2.29–2.37.CrossRefGoogle Scholar
  8. Carr, B. J., & Rees, M. J. (1979). The anthropic principle and the structure of the physical world. Nature, 278, 605.ADSCrossRefGoogle Scholar
  9. Carter, B. (1974). In M. S. Longair (Ed.), Confrontation of cosmological models with observations (p. 291). Dordrecht: Reidel.CrossRefGoogle Scholar
  10. Chomsky, N. (1975). Reflections of language. New York: Pantheon Books.Google Scholar
  11. Collins, R. (2007). In B. J. Carr (Ed.), Universe or multiverse? (pp. 459–480). Cambridge: Cambridge University Press.Google Scholar
  12. d’Espagnat, B. (1983). In search of reality. New York: Springer.CrossRefGoogle Scholar
  13. Davies, P. C. W. (2006). The Goldilocks enigma: Why is the universe just right for life? London: Allen Lane.Google Scholar
  14. de Broglie, L. (1963). In A. March & I. M. Freeman (Eds.), The new world of physics (p. 143). New York: Vintage Books.Google Scholar
  15. Dennett, D. C. (1978). Towards a cognitive theory of consciousness. In Brainstorms: Philosophical essays in mind and psychology. Montgomery: Bradford Books.Google Scholar
  16. Dicke, R. H. (1961). Dirac’s cosmology and Mach’s principle. Nature, 192, 440.ADSMATHCrossRefGoogle Scholar
  17. Dirac, P. A. M. (1963). The evolution of the physicist’s picture of nature. Scientific American, 208(5), 45.ADSCrossRefGoogle Scholar
  18. Dyson, F. (1979). Time without end: physics and biology in an open universe. Reviews of Modern Physics, 51, 447.ADSCrossRefGoogle Scholar
  19. Efstathiou, G. (1995). An anthropic argument for a cosmological constant. Monthly Notices of the Royal Astronomical Society, 274, L73.ADSGoogle Scholar
  20. Ellis, G. F. R. (1993). Before the beginning: Cosmology explained. London: Boyars/Bowerdean.Google Scholar
  21. Ellis, G. F. R., Kirchner, U., & Stoeger, W. R. (2004). Multiverses and physical cosmology. Monthly Notices of the Royal Astronomical Society, 347, 921.ADSCrossRefGoogle Scholar
  22. Everett, H. (1957). Relative state formulation of quantum mechanics. Reviews of Modern Physics, 29, 454.MathSciNetADSCrossRefGoogle Scholar
  23. Garriga, J., Guth, A., & Vilenkin, A. (2006). Eternal inflation, bubble collisions and the persistence of memory. Physical Review D, 76, 123512.ADSCrossRefGoogle Scholar
  24. Guth, A. H. (1981). Inflationary universe: a possible solution to the horizon and flatness problem. Physical Review D, 23, 347.ADSCrossRefGoogle Scholar
  25. Hawking, S. W. (2001). The universe in a nutshell. London: Bantam Press.Google Scholar
  26. Hogan, C. J. (2000). Why the universe is just so. Reviews of Modern Physics, 72, 1149.ADSCrossRefGoogle Scholar
  27. Holder, R. (2004). God, the multiverse and everything: Modern cosmology and the argument from design. Aldershot: Ashgate.Google Scholar
  28. James, W. (1890). The principles of psychology. New York: Henry Holt & Co.CrossRefGoogle Scholar
  29. Jeans, J. (1931). The mysterious universe. Cambridge: Cambridge University Press.Google Scholar
  30. Kallosh, R. (2007). M/String theory and anthropic reasoning. In B. J. Carr (Ed.), Universe or multiverse? (p. 191). Cambridge: Cambridge University Press.Google Scholar
  31. Kaluza, T. (1921). Zum Unitätsproblem in der Physik. Sitzungsterichte der Preussischen Akademie der Wissenchaften zu Berlin, K1, 966–972.Google Scholar
  32. Kauffman, S. A. (1995). At home in the universe. London: Penguin.Google Scholar
  33. Klein, O. (1926). Quantentheorie und Fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37, 895–906.ADSMATHCrossRefGoogle Scholar
  34. Kragh, H. (2010). An anthropic myth: Fred Hoyle’s carbon-12 resonance level. Archive for History of Exact Sciences, 64, 721–751.CrossRefGoogle Scholar
  35. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: Chicago University Press.Google Scholar
  36. Leslie, J. (1989). Universes. London: Routledge.Google Scholar
  37. Lewis, D. K. (2000). On the plurality of worlds. Oxford: Blackwell.Google Scholar
  38. Linde, A. D. (1986). Eternally existing self-reproducing chaotic inflationary universe. Physics Letters B, 175, 395.ADSCrossRefGoogle Scholar
  39. Linde, A. D. (2004). Inflation, quantum cosmology and the anthropic principle. In J. D. Barrow et al. (Eds.), Science and ultimate reality (pp. 426–458). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  40. Manson, N. A. (2003). God and design. London: Routledge.CrossRefGoogle Scholar
  41. Mitton, S. (2011). Fred Hoyle: A life in science (pp. 205–210). Cambridge: Cambridge University Press.MATHCrossRefGoogle Scholar
  42. Oberhummer, H., Csoto, A., & Schlattl, H. (2000). Stellar production rates of carbon and its abundance in the universe. Science, 289, 88.ADSCrossRefGoogle Scholar
  43. Page, D. N. (2009). Anthropic estimates of the charge and mass of the proton. Physics Letters B, 67. 398P.Google Scholar
  44. Pagels, H. R. (1985). Perfect symmetry (p. 359). New York: Simon & Schuster.Google Scholar
  45. Penrose, R. (1994). Shadows of the mind: A search for the missing science of consciousness. Oxford: Oxford University Press.Google Scholar
  46. Penrose, R. (1997). The large, the small and the human mind. Cambridge: Cambridge University Press.MATHGoogle Scholar
  47. Perlmutter, S., et al. (1999). Measurements of omega and lambda from 42 high-redshift supernovae. The Astrophysical Journal, 517, 565.ADSCrossRefGoogle Scholar
  48. Polkinghorne, J. (1994). The faith of a physicist. Princeton: Princeton University Press.Google Scholar
  49. Randall, L., & Sundrum, R. (1999). An alternative to compactification. Physical Review Letters, 83, 4690.MathSciNetADSMATHCrossRefGoogle Scholar
  50. Rees, M. J. (2001). Just six numbers: The deep forces that shape the universe. London: Weidenfeld and Nicholson.Google Scholar
  51. Reeves, H. (1991). The hour of our delight. New York: Freeman.Google Scholar
  52. Riess, A. G., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116, 1009.ADSCrossRefGoogle Scholar
  53. Smolin, L. (1997). The life of the cosmos. Oxford: Oxford University Press.MATHGoogle Scholar
  54. Smolin, L. (2007). The trouble with physics. New York: Allen Lane.Google Scholar
  55. Spergel, D. N., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe observations. Astrophysical Journal Supplement Series, 148, 175.ADSCrossRefGoogle Scholar
  56. Squires, E. (1990). Conscious mind in the physical world. New York: Adam Holger.MATHGoogle Scholar
  57. Stapp, H. P. (1993). Mind, matter, and quantum mechanics. New York: Springer.MATHGoogle Scholar
  58. Steinhardt, P. J., & Turok, N. (2006). Why the cosmological constant is small and positive. Science, 312, 1180–1183.MathSciNetADSMATHCrossRefGoogle Scholar
  59. Susskind, L. (2005). The cosmic landscape: String theory and the illusion of intelligent design. New York: Little Brown & Co.Google Scholar
  60. Tegmark, M. (2003). Parallel universes. Scientific American, 288, 41.CrossRefGoogle Scholar
  61. Tegmark, M., & Rees, M. J. (1998). Why is the cosmic microwave background fluctuction level 10−5? The Astrophysical Journal, 499, 526.ADSCrossRefGoogle Scholar
  62. Tolman, R. (1934). Relativity, thermodynamics and cosmology. Oxford: Clarendon.Google Scholar
  63. Vilenkin, A. (1983). Birth of inflationary universe. Physical Review D, 27, 2848.MathSciNetADSCrossRefGoogle Scholar
  64. Vilenkin, A. (1995). Predictions from quantum cosmology. Physical Review Letters, 74, 846.ADSCrossRefGoogle Scholar
  65. Vilenkin, A. (2006). Many worlds in one: The search for other universes. New York: Farrar, Strauss and Giroux.MATHGoogle Scholar
  66. Watson, J. B. (1910). Psychology from the standpoint of a behaviourist. Philadelphia: Lippincott.Google Scholar
  67. Weinberg, S. W. (1977). The first three minutes. New York: Basic.Google Scholar
  68. Weinberg, S. W. (1987). Anthropic bound on the cosmological constant. Physical Review Letters, 59, 2607.ADSCrossRefGoogle Scholar
  69. Weinberg, S. W. (2007). In B. J. Carr (Ed.), Universe or multiverse? (p. 29). Cambridge: Cambridge University Press.Google Scholar
  70. Wertheim, M. (1999). The pearly gates of cyberspace. London: Virago.Google Scholar
  71. Wheeler, J. (1977). Genesis and observership. In R. Butts & J. Hintikka (Eds.), Foundational problems in the special sciences. Dordecht: Reidel.Google Scholar
  72. Wilbur, K. (2001). Quantum questions: Mystical writings of the world’s greatest physicists. Boston: Shambhala.Google Scholar
  73. Woit, P. (2006). Not even wrong: The failure of string theory and the continuing challenge to unify the laws of physics. New York: Basic Books.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Physics and Astronomy, Queen MaryUniversity of LondonLondonUK

Personalised recommendations