Skip to main content

Multiverses, Science, and Ultimate Causation

  • Chapter
  • First Online:

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 395))

Abstract

This chapter the motivation and evidence for the various types of multiverses that have been proposed. A key problem is their lack of testability, because of the existence of cosmic horizons; nevertheless they are claimed to be a scientific hypothesis. I review the arguments in their favour, and suggest none is conclusive, although there is one case where they could be disproved (the small universe case) and one that would indeed be quite convincing circumstantial evidence (circles in the CMB sky associated with variation of fundamental constants).

Multiverse proponents are in fact proposing weakening the criteria for a scientific theory, which is a dangerous tactic. The scientific status of these proposals is particularly brought in to question by various claims of physically existing infinities, which cannot possibly be verified. Finally I comment that multiverses do not solve issues of ultimate causation, as claimed by their proponents. If one wants to investigate this issue, one must extend the kind of data one considers beyond data obtainable from physics experiments and astronomical observations, to include broader areas of human experience, that are also evidence on the nature of the universe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An example of a paper that apparently only considers hypothetical ensembles is Bjorken (2004). The author talks about “constructing ensembles”. Regrettably, we are unable to do so.

  2. 2.

    For more detail, see the spacetime diagrams by Mark Whittle at http://sol.astro.virginia.edu/class/whittle/astr553/Topic16/t16_light_cones.html.

  3. 3.

    A discussion of testability in this context is given in Ellis (1975).

  4. 4.

    Gellman was quoting from T.H. White, The Once and Future King.

References

  • Aguirre, A., & Johnson, M. C. (2009). A status report on the observability of cosmic bubble collisions. Reports on Progress in Physics, 74, 074901 [arXiv:0908.4105v2].

    Article  ADS  Google Scholar 

  • Balashov, Y. Y. (1991). Resource letter AP-1 the anthropic principle. American Journal of Physics, 54, 1069.

    Article  MathSciNet  ADS  Google Scholar 

  • Barrow, J. D. (2005). General cosmological bounds on spatial variations of physical constants. Physical Review D, 71, 083520.

    Article  ADS  Google Scholar 

  • Barrow, J. D., & Tipler, F. J. (1986). The anthropic cosmological principle. Oxford: Oxford University Press.

    Google Scholar 

  • Bjorken, J. D. (2004). The classification of universes. Astro-ph/0404233. SLAC-PUB-10276.

    Google Scholar 

  • Bondi, H. (1960). Cosmology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bostrom, N. (2003). Are you living in a computer simulation? The Philosophical Quarterly, 53, 243–255.

    Article  Google Scholar 

  • Carr, B. (Ed.). (2009). Universe or multiverse? Cambridge: Cambridge University Press.

    Google Scholar 

  • Cornish, N. J., Spergel, D. N., & Starkman, G. D. (1998). Circles in the sky: Finding topology with the microwave background radiation. Classical Quantum Gravity, 15, 2657–2670 [arXiv:gr-qc/9602039].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davies, P. C. W. (2004). Multiverse cosmological models. Modern Physics Letters A, 19, 727.

    Article  MathSciNet  ADS  Google Scholar 

  • Dawkins, R. (2006). The god delusion. Boston: Houghton Mifflin.

    Google Scholar 

  • Deutsch, D. (1997). The fabric of reality: The science of parallel universes. New York: Allen Lane.

    Google Scholar 

  • Ellis, G. F. R. (1975). Cosmology and verifiability. Quarterly Journal of the Royal Astronomical Society, 16, 245.

    ADS  Google Scholar 

  • Ellis, G. F. R. (2006). Issues in the philosophy of cosmology. In J. Butterfield & J. Earman (Eds.), Handbook in philosophy of physics (pp. 1183–1285). Amsterdam: Elsevier [http://arxiv.org/abs/astro-ph/0602280].

  • Ellis, G. F. R. (2011). Why are the laws of nature as they are? What underlies their existence? In D. York, O. Gingerich, & S.-N. Zhang (Eds.), The astronomy revolution: 400 years of exploring the cosmos (pp. 385–404). Boca Raton: Taylor and Francis.

    Google Scholar 

  • Ellis, G. F. R., Kirchner, U., & Stoeger, W. R. (2003). Multiverses and physical cosmology. Monthly Notices of the Royal Astronomical Society, 347, 921.

    Article  ADS  Google Scholar 

  • Ellis, G. F. R., & Schreiber, G. (1986). Observational and dynamic properties of small universes. Physics Letters A, 115, 97.

    Article  MathSciNet  ADS  Google Scholar 

  • Ellis, G. F. R., & Stoeger, W. J. (1988). Horizons in inflationary universes. Classical and Quantum Gravity, 207.

    Google Scholar 

  • Feeney, S. M., Johnson, M. C., Mortlock, D. J., & Peiris, H. V. (2011). First observational tests of eternal inflation. Physical Review Letters, 107(7), 071301 [arXiv:1012.1995v3]. Phys. Rev. Lett. 107, 071301 (2011)

    Article  ADS  Google Scholar 

  • Freivogel, B., Kleban, M., Martinez, M. R., & Susskind, L. (2006). Observational consequences of a landscape. Journal of High Energy Physics, 0603, 039 [arXiv:hep-th/0505232].

    Article  ADS  Google Scholar 

  • Gedalia, O., Jenkins, A., & Perez, G. (2011). Why do we observe a weak force? The hierarchy problem in the multiverse. Physical Review, D83, 115020 [arXiv:1010.2626v3].

    ADS  Google Scholar 

  • Greene, B. (2011). The hidden reality: Parallel universes and the deep laws of the cosmos. New York: Knopff.

    MATH  Google Scholar 

  • Gurzadyan, V.G.,& Penrose R. (2011a). Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity. [arXiv:1011.3706].

    Google Scholar 

  • Gurzadyan, V. G., & Penrose R. (2011b). CCC-predicted low-variance circles in CMB sky and LCDM. [arXiv:1104.5675].

    Google Scholar 

  • Guth, A. H. (2001). Eternal Inflation. astro-ph/0101507. Report MIT-CTP-3007.

    Google Scholar 

  • Hartle, J. (2004). Anthropic reasoning and quantum cosmology. New York: American Institute of Physics. gr-qc/0406104.

    Google Scholar 

  • Hilbert, D. (1964). On the infinite. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (p. 134). Englewood Cliff: Prentice Hall.

    Google Scholar 

  • Kachru, S., Kallosh, R., Linde, A., & Trivedi, S. P. (2003). de Sitter Vacua in string theory. Physical Review, D68, 046005 [arXiv:hep-th/0301240v2].

    MathSciNet  ADS  Google Scholar 

  • Katz, G., & Weeks, J. (2004). Polynomial interpretation of multipole vectors. Physical Review D, 70, 063527. astro-ph/0405631. Phys.Rev. D70 (2004) 063527

    Article  ADS  Google Scholar 

  • Kleban, M. (2011). Cosmic bubble collisions. London: Institute of Physics [arXiv:1107.2593v1].

    Google Scholar 

  • Lachieze-Ray, M., & Luminet, J. P. (1995). Cosmic topology. Physics Reports, 254, 135.

    Article  MathSciNet  ADS  Google Scholar 

  • Leslie, J. (1996). Universes. London: Routledge.

    Google Scholar 

  • Lewis, D. K. (2000). On the plurality of worlds. Oxford: Blackwell.

    Google Scholar 

  • Linde, A. D. (1983). Chaotic inflation. Physics Letters, B129, 177.

    MathSciNet  ADS  Google Scholar 

  • Linde, A. D. (1990). Particle physics and inflationary cosmology. Chur: Harwood Academic Publishers.

    Google Scholar 

  • Linde, A. D. (2003). Inflation, quantum cosmology and the anthropic principle. In J. D. Barrow (Ed.), Science and ultimate reality: From quantum to cosmos. Cambridge: Cambridge University Press.

    Google Scholar 

  • Linde, A. D., Linde, D. A., & Mezhlumian, A. (1994). From the big bang theory to the theory of a stationary universe. Physical Review D, 49, 1783.

    Article  ADS  Google Scholar 

  • Linde, A., & Noorbala, M. (2010). Measure problem for eternal and non-eternal inflation. arXiv:1006.2170.

    Google Scholar 

  • Luminet, J. P., Weeks, J. R., Riazuelo, A., Lehoucq, R., & Uzan, J.-P. (2003) “Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background” Nature. 425:593L.

    Google Scholar 

  • Moss, A., Scott, D., & Zibin, J. P. (2010). No evidence for anomalously low variance circles on the sky. [arXiv:1012.1305v3].

    Google Scholar 

  • Murphy, N., & Ellis, G. F. R. (1996). On the moral nature of the universe: Cosmology, theology, and ethics. Minneapolis: Fortress Press.

    Google Scholar 

  • Nelson, W., & Wilson-Ewing, E. (2011). Pre-Big-Bang cosmology and circles in the cosmic microwave background. [arXiv:1104.3688v2] Phys.Rev.D84:043508,2011.

    Google Scholar 

  • Olive, K. A., Peloso, M., & Uzan, J.-P. (2011). The wall of fundamental constants. Physical Review, D83, 043509 [arXiv:1011.1504v1].

    ADS  Google Scholar 

  • Penrose, R. (2010). Cycles of time: An extraordinary new view of the universe. London: The Bodley Head.

    MATH  Google Scholar 

  • Rees, M. J. (1999). Just six numbers: The deep forces that shape the universe. London: Weidenfeld and Nicholson.

    Google Scholar 

  • Rees, M. J. (2001). Our cosmic habitat. Princeton: Princeton University Press.

    Google Scholar 

  • Rees, M. J. (2003). Numerical coincidences and ‘tuning’ in cosmology. In C. Wickramasinghe (Ed.), Fred hoyle’s universe (p. 95). Dordrecht: Kluwer.

    Google Scholar 

  • Rothman, T., & Ellis, G. F. R. (1992). Smolin’s natural selection hypothesis. Quartely Journal rof the Royal Astronomical Society, 34, 201.

    ADS  Google Scholar 

  • Sciama, D. W. (1993). Is the universe unique? In G. Borner & J. Ehlers (Eds.), Die Kosmologie der Gegenwart. München: Serie Piper.

    Google Scholar 

  • Shaw, D. J., & Barrow, J. D. (2007). Observable effects of scalar fields and varying constants. General Relativity and Gravitation, 39, 1235–1257.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smolin, L. (1997). The life of the cosmos. New York: Oxford University Press.

    MATH  Google Scholar 

  • Starobinsky, A. A. (1986). Current trends in field theory, quantum gravity and strings. In Lecture notes in physics (Vol. 246, p. 107). Heidelberg: Springer.

    Google Scholar 

  • Steinhardt, P. J., & Turok, N. (2002). A cyclic model of the universe. Science, 296, 1436.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Susskind, L. (2003). The anthropic landscape of string theory. hep-th/0302219.

    Google Scholar 

  • Susskind, L. (2006). The cosmic landscape: String theory and the illusion of intelligent design. New York: Back Bay Books.

    Google Scholar 

  • Tegmark, M. (1998). Is the theory of everything merely the ultimate ensemble theory? Annals of Physics, 270, 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tegmark, M. (2004). Parallel universes. In J. D. Barrow (Ed.), Science and ultimate reality: From quantum to cosmos. Cambridge: Cambridge University Press [astro-ph/0302131].

    Google Scholar 

  • Tod, P. (2011). Penrose’s circles in the CMB and a test of inflation [arXiv:1107.1421v1].

    Google Scholar 

  • Uzan, J-P. (2010). Varying constants, gravitation and cosmology [arXiv:1009.5514v1]. Living Reviews in Relativity

    Google Scholar 

  • Vilenkin, A. (1983). The birth of inflationary universes. Physical Review, D27, 2848.

    MathSciNet  ADS  Google Scholar 

  • Vilenkin, A. (1995). Predictions from quantum cosmology. Physical Review Letters, 74, 846.

    Article  ADS  Google Scholar 

  • Vilenkin, A. (2007). Many worlds in one: The search for other universes. New York: Hill and Wang.

    Google Scholar 

  • Webb, J. K., King, J. A., Murphy, M. T., Flambaum, V. V., Carswell, R. F., & Bainbridge, M. B. (2008). Evidence for spatial variation of the fine structure constant [arXiv:1008.3907v1]. Phys. Rev. Lett., 107, 191101, 2011

    Google Scholar 

  • Weinberg, S. W. (1972). Gravitation and cosmology. New York: Wiley.

    Google Scholar 

  • Weinberg, S. W. (2000a). The cosmological constant problems. astro-ph/0005265. Report UTTG-07-00

    Google Scholar 

  • Weinberg, S. W. (2000b). A priori probability distribution of the cosmological constant. Physical Review D, 61, 103505.

    Article  MathSciNet  ADS  Google Scholar 

  • Yamauchi, D., Linde, A., Naruko, A., Sasaki, M., & Tanaka, T. (2011). Open inflation in the landscape. arXiv:1105.2674v2. Phys.Rev.D84:043513,2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ellis .

Editor information

Editors and Affiliations

Appendix

Appendix

I am astounded that serious scientists and philosophers can propose that the universe could be a computer simulation (Bostrom 2003; Greene 2011). It is totally impracticable from a technical viewpoint, and ignores the way the human mind is bodily-embedded and not an algorithmic computer process. It raises far more questions than it answers:

  • Where is this computer?

  • How did it come into being?

  • Why does it not crash every few seconds?

  • How could this be proved to be the case—what evidence is there? How could it be disproved?

Protagonists seem to have confused science fiction with science. Late night pub discussion is not a viable theory.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellis, G. (2012). Multiverses, Science, and Ultimate Causation. In: Holder, R., Mitton, S. (eds) Georges Lemaître: Life, Science and Legacy. Astrophysics and Space Science Library, vol 395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32254-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32254-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32253-2

  • Online ISBN: 978-3-642-32254-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics