Skip to main content

On the Advice Complexity of Tournaments

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

  • 1058 Accesses

Abstract

Advice complexity, introduced by Karp and Lipton, asks how many bits of “help” suffice to accept a given language. This is a notion that contains aspects both of informational and computational complexity, and captures non-uniform complexity. We are concerned with the connection between this notion and P-selective sets. The main question we study in our paper is how complex should the advice be as a function of the power of the interpreter, from the standpoint of average-case complexity. In the deterministic case, Ko proved that quadratic advice suffices, and Hemaspaandra and Torenvliet showed that linear advice is required. A long standing open problem is the question how to close this gap. We prove that in the probabilistic case linear size advice is enough, as long as this advice depends on the randomness. This is the first sub-quadratic result for the class P-sel for bounded-error probabilistic machines. As a consequence, several Karp-Lipton type theorems are obtained. Our methods are based on several fundamental concepts of theoretical computer science, as hardness amplification and Von Neumann’s Minimax theorem, and demonstrate surprising connections between them and the seemingly unrelated notion of selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications 199(Suppl. 1), 339–355 (1994); Special Issue Honoring Ingram Olkin

    Google Scholar 

  2. Amir, A., Beigel, R., Gasarch, W.I.: Some connections between bounded query classes and non-uniform complexity. ECCC 7(024) (2000)

    Google Scholar 

  3. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. In: Proc. of the 31st IEEE Symp. on Foundations of Computer Science, pp. 16–25 (1990)

    Google Scholar 

  4. Balcázar, J., Book, R.V., Schöning, U.: Sparse sets lowness and highness. SIAM J. Comput. 15, 739–747 (1986)

    Article  MathSciNet  Google Scholar 

  5. Balcázar, J.L., Book, R.V., Schöning, U.: The polynomial-time hierarchy and sparse oracles. J. ACM 33, 603–617 (1986)

    Article  MATH  Google Scholar 

  6. Beigel, R.: Personal communication. Weak Approximation, Help Bits, and the Complexity of Optimization Problems (2005)

    Google Scholar 

  7. Beigel, R., Fortnow, L., Pavan, A.: Membership comparable and P-selective sets. Technical Report 2002-006N. NEC Research Institute (2008)

    Google Scholar 

  8. Beimel, A., Ben Daniel, S.A., Kushilevitz, E., Weinreb, E.: Choosing, Agreeing, and Eliminating in Communication Complexity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 451–462. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Bogdanov, A., Safra, S.: Hardness amplification for errorless heuristics. In: Annual IEEE Symposium on Foundations of Computer Science, vol. 0, pp. 418–426 (2007)

    Google Scholar 

  10. Buhrman, H., Torenvliet, L.: P-selective self-reducible sets: A new characterization of p. J. Comput. Syst. Sci. 53(2), 210–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buhrman, H., Torenvliet, L., van Emde Boas, P.: Twenty questions to a P-selector. Inf. Process. Lett. 48(4), 201–204 (1993)

    Article  Google Scholar 

  12. Buhrman, H., van Helden, P., Torenvliet, L.: P-selective self-reducibles sets: a new characterization of p. In: Proceedings of the Eighth Annual Structure in Complexity Theory Conference 1993, pp. 44–51, 18–21 (1993)

    Google Scholar 

  13. Buresh-Oppenheim, J., Kabanets, V., Santhanam, R.: Uniform hardness amplification in NP via monotone codes. Electronic Colloquium on Computational Complexity (ECCC) 13(154) (2006)

    Google Scholar 

  14. Cai, J., Chakaravarthy, V., Hemaspaandra, L., Ogihara, M.: Some Karp-Lipton type theorems based on S 2 Technical Report TR-819, Department of Computer Science, University of Rochester, Rochester, NY (2001)

    Google Scholar 

  15. Cook, S.A., Krajícek, J.: Consequences of the provability of NP subset of or equal to P/poly. J. Symb. Log. 72(4), 1353–1371 (2007)

    Article  MATH  Google Scholar 

  16. Faliszewski, P., Hemaspaandra, L.: Open questions in the theory of semifeasible computation. SIGACT News 37, 47–65 (2006)

    Article  Google Scholar 

  17. Faliszewski, P., Hemaspaandra, L.A.: Advice for semifeasible sets and the complexity-theoretic cost(lessness) of algebraic properties. Int. J. Found. Comput. Sci. 16(5), 913–928 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gopalan, P., Guruswami, V.: Hardness amplification within NP against deterministic algorithms. In: Annual IEEE Conference on Computational Complexity, vol. 0, pp. 19–30 (2008)

    Google Scholar 

  19. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Transactions of the American Mathematical Society 117, 285–306 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hemaspaandra, E., Naik, A.V., Ogihara, M., Selman, A.L.: P-selective sets, and reducing search to decision vs. self-reducibility (1994)

    Google Scholar 

  21. Hemaspaandra, L.A., Naik, A.V., Ogihara, M., Selman, A.L.: Computing solutions uniquely collapses the polynomial hierarchy. SIAM J. Comput. 25(4), 697–708 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hemaspaandra, L.A., Nasipak, C., Parkins, K.: A note on linear nondeterminism, linear-sized, Karp-Lipton advice for the P-selective sets. JJUCS 4(8), 670–674 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Hemaspaandra, L.A., Torenvliet, L.: Optimal advice. Theoretical Computer Science 154(2), 367–377 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hemaspaandra, L.A., Torenvliet, L.: Theory of Semi-Feasible Algorithms. Springer, New York (2003)

    MATH  Google Scholar 

  25. Hemaspaandra, L.A., Zhigen, J.: P-selectivity: Intersections and indices. Theoretical Computer Science 145(1-2), 371–380 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jockusch, C.: Semirecursive sets and positive reducibility. Transactions of the American Mathematical Society 131(2), 420–436 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: STOC, pp. 302–309 (1980)

    Google Scholar 

  28. Ko, K.: On self-reducibility and weak P-selectivity. JCSS 26(2), 209–221 (1983)

    MATH  Google Scholar 

  29. Lipton, R., Young, N.E.: Simple strategies for large zero-sum games with applications to complexity theory. In: Proceedings of ACM Symposium on Theory of Computing, pp. 734–740 (1994)

    Google Scholar 

  30. Lund, C., Fortnow, L., Karloff, H.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. of the ACM 41(5), 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moon, J.W.: An extension of Landau’s theorem on tournaments. Pacific J. Math. 13, 1343–1345 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Moon, J.W.: Topics on tournaments. Rinehart and Winston, New York (1968)

    MATH  Google Scholar 

  34. Von Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100(1), 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  35. O’Donnell, R.: Hardness amplification within NP. In: STOC 2002: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 751–760. ACM, New York (2002)

    Chapter  Google Scholar 

  36. Ogihara, M.: Polynomial-time membership comparable sets. SIAM J. Comput. 24(5), 1068–1081 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Selman, A.L.: P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 546–555. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  38. Selman, A.L.: Analogues of semicursive sets and effective reducibilities to the study of NP complexity. Information and Control 52(1), 36–51 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Baker, T., Gill, J., Solovay, R.: Relativizations of the \( \mathcal{P} =? \mathcal{NP}\) question. SIAM Journal on Computing 4(4), 431–442 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Thakur, M.: On optimal advice for P-selective sets. Technical Report TR-819, Department of Computer Science. University of Rochester, Rochester, NY (2003)

    Google Scholar 

  41. Toda, S.: On polynomial-time truth-table reducibility of intractable sets to P-selective sets. Theory of Computing Systems 24, 69–82 (1991), doi:10.1007/BF02090391

    MathSciNet  MATH  Google Scholar 

  42. Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, pp. 126–135. IEEE Computer Society, Washington, DC (2003)

    Chapter  Google Scholar 

  43. Trevisan, L.: On uniform amplification of hardness in NP. In: STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 31–38. ACM, New York (2005)

    Chapter  Google Scholar 

  44. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4), 331–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13, 147–188 (2005), doi:10.1007/s00037-004-0187-1

    Article  MathSciNet  Google Scholar 

  46. Wang, J.: Some results on selectivity and self-reducibility. Inf. Proc. Letters 55(2), 81–87 (1995)

    Article  MATH  Google Scholar 

  47. Yao, A.C.: Some complexity questions related to distributed computing. In: Proc. of the 11th ACM Symp. on the Theory of Computing, pp. 209–213 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben Daniel, S. (2012). On the Advice Complexity of Tournaments. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics