Skip to main content

Lower Bounds against Weakly Uniform Circuits

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

Abstract

A family of Boolean circuits \(\{C_n\}_{n\geqslant 0}\) is called γ(n)-weakly uniform if there is a polynomial-time algorithm for deciding the direct-connection language of every C n , given advice of size γ(n). This is a relaxation of the usual notion of uniformity, which allows one to interpolate between complete uniformity (when γ(n) = 0) and complete non-uniformity (when γ(n) > |C n |). Weak uniformity is essentially equivalent to succinctness introduced by Jansen and Santhanam [12].

Our main result is that Permanent is not computable by polynomial-size n o(1)-weakly uniform TC 0 circuits. This strengthens the results by Allender [2] (for uniform TC 0) and by Jansen and Santhanam [12] (for weakly uniform arithmetic circuits of constant depth). Our approach is quite general, and can be used to extend to the “weakly uniform” setting all currently known circuit lower bounds proved for the “uniform” setting. For example, we show that Permanent is not computable by polynomial-size (logn)O(1)-weakly uniform threshold circuits of depth o(loglogn), generalizing the result by Koiran and Perifel [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M.: Proving Lower Bounds Via Pseudo-random Generators. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Allender, E.: The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical Computer Science (1999)

    Google Scholar 

  3. Allender, E., Gore, V.: A uniform circuit lower bound for the permanent. SIAM Journal on Computing 23(5), 1026–1049 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S., Barak, B.: Complexity theory: a modern approach. CUP, NY (2009)

    Book  MATH  Google Scholar 

  5. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC 1. JCSS 41, 274–306 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Chen, R., Kabanets, V.: Lower bounds against weakly uniform circuits. In: ECCC, vol. 19, p. 7 (2012)

    Google Scholar 

  7. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. JACM 28(1), 114 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17(1), 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986 (1986)

    Google Scholar 

  10. Heintz, J., Schnorr, C.-P.: Testing polynomials which are easy to compute. L’Enseignement Mathématique 30, 237–254 (1982)

    MathSciNet  Google Scholar 

  11. Iwama, K., Morizumi, H.: An Explicit Lower Bound of 5n-o(n) for Boolean Circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Jansen, M., Santhanam, R.: Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 724–735. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1–2), 1–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control 55, 40–56 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karp, R.M., Lipton, R.J.: Turing machines that take advice. L’Enseignement Mathématique 28(3-4), 191–209 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-constant-depth threshold circuits for the permanent. In: CCC (2009)

    Google Scholar 

  17. Lachish, O., Raz, R.: Explicit lower bound of 4.5n − o(n) for boolean circuits. In: Proc. of the Thirty-Third ACM Symp. on Theory of Computing, pp. 399–408 (2001)

    Google Scholar 

  18. Lupanov, O.B.: On the synthesis of switching circuits. Doklady Akademii Nauk SSSR 119(1), 23–26 (1958); English translation in Soviet Mathematics Doklady

    MathSciNet  MATH  Google Scholar 

  19. Parberry, I., Schnitger, G.: Parallel computation with threshold functions. In: Proc. of the First IEEE Conf. on Structure in Complexity Theory, pp. 272–290 (1986)

    Google Scholar 

  20. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Mathematical Notes 41, 333–338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Razborov, A.A., Rudich, S.: Natural proofs. JCSS 55, 24–35 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Ruzzo, W.L.: On uniform circuit complexity. JCSS 22(3), 365–383 (1981)

    MathSciNet  MATH  Google Scholar 

  23. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Technical Journal 28(1), 59–98 (1949)

    MathSciNet  Google Scholar 

  24. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: Proc. of the Nineteenth ACM STOC, pp. 77–82 (1987)

    Google Scholar 

  25. Torán, J.: Complexity classes defined by counting quantifiers. JACM 38, 752 (1991)

    Article  Google Scholar 

  26. Valiant, L.: The complexity of computing the permanent. TCS 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Informatica 23, 325–356 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Williams, R.: Non-uniform ACC circuit lower bounds. In: CCC (2011)

    Google Scholar 

  29. Yao, A.C.: Separating the polynomial-time hierarchy by oracles. In: FOCS (1985)

    Google Scholar 

  30. Zak, S.: A Turing machine hierarchy. TCS 26, 327–333 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zanko, V.: #P-Completeness via Many-One Reductions. IJFCS 1, 77 (1991)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, R., Kabanets, V. (2012). Lower Bounds against Weakly Uniform Circuits. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics