Control System Design

  • Zhizheng WuEmail author
  • Azhar Iqbal
  • Foued Ben Amara


This chapter presents a summary of the control approaches used to regulate the deformable mirror surface shape in AO systems. In Sect. 6.1, the different control strategies proposed in the literature to regulate the deformable mirror surface shape in AO systems are reviewed and organized into four categories, namely, classical decentralized control methods, centralized optimal control methods, distributed control methods, adaptive control methods, and others. The control problem for magnetic fluid deformable mirrors (MFDMs) is formulated in Sect. 6.2. The control system architecture for MFDM-based AO systems is first presented. Such systems typically include three major components, namely, a wavefront sensor, an MFDM wavefront corrector, and a controller. To simplify the implementation of the closed-loop control system and the testing of the performance of the proposed control algorithms, an equivalent closed-loop system configuration is formulated. The summary follows in Sect. 6.3.


Adaptive Optic Adaptive Optic System Wavefront Aberration Deformable Mirror Linear Quadratic Gaussian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Auburn J, Lorell K, Mast T, Nelson J (1987) Dynamic analysis of the actively controlled segmented mirror of the W.M. Keck ten-meter telescope. IEEE Contr Syst Mag 7(6):3–10CrossRefGoogle Scholar
  2. Bamieh B (1997) The structure of optimal controllers of spatially-invariant distributed parameter systems. Proc IEEE Conf Decis Contr 2:1056–1061Google Scholar
  3. Bamieh B, Paganini F, Dahleh A (2002) Distributed control of spatially invariant systems. IEEE Trans Automat Contr 47:1091–1107MathSciNetCrossRefGoogle Scholar
  4. Baudouin L, Prieur C, Guignard F, Arzelier D (2008) Robust control of a bimorph mirror for adaptive optics systems. Appl Opt 47:3637–3645CrossRefGoogle Scholar
  5. Castros G, Paganini F (2002) Convex synthesis of localized controllers for spatially invariant systems. Automatica 38:445–456CrossRefGoogle Scholar
  6. Correia C, Raynaud HF, Kulcsar C, Conan JM (2010) On the optimal reconstruction and control of adaptive optical systems with mirror dynamics. J Opt Soc Am A 27(2):333–349CrossRefGoogle Scholar
  7. Dessenne C, Madec P, Rousset M (1997) Modal prediction for closed loop adaptive optics. Opt Lett 22:1535–1537CrossRefGoogle Scholar
  8. Downie J, Goodman W (1989) Optimal wavefront control for adaptive segmented mirrors. Appl Opt 28:5326–5332CrossRefGoogle Scholar
  9. Ficocelli M, Ben Amara F (2012) Online tuning for retinal imaging adaptive optics systems. IEEE Trans Contr Syst Technol 20(3):747–754CrossRefGoogle Scholar
  10. Fraanje R, Massioni P, Verhaegen M (2010) A decomposition approach to distributed control of dynamic deformable mirrors. Int J Optomechatronics 4(3):269–284CrossRefGoogle Scholar
  11. Fried D (1990) Time delay induced mean square error in adaptive optics. J Opt Soc Am A 7:1224–1227CrossRefGoogle Scholar
  12. Gibson JS, Chang CC, Ellerbroek BL (2000) Adaptive optics: wave-front correction by use of adaptive filtering and control. Appl Opt 39:2525–2538CrossRefGoogle Scholar
  13. Goodman JW (2004) Introduction to Fourier optics. Roberts & Company, ColoradoGoogle Scholar
  14. Hinnen K, Verhaegen M, Doelman N (2007) Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control. J Opt Soc Am A 24:1714–1725CrossRefGoogle Scholar
  15. Hinnen K, Verhaegen M, Doelman N (2008) A data driven H2 optimal control approach for adaptive optics. IEEE Trans Contr Syst Technol 16(3):381–389CrossRefGoogle Scholar
  16. Huang J, Looze D, Denis N, Castanon D, Wirth A (1995a) Dynamic modeling and identification of an adaptive optics system. In: Proceedings of the 4th IEEE conference on control applications, Albany, NY, USA, pp 456–463Google Scholar
  17. Huang J, Looze D, Denis N, Castanon D, Wirth A (1995b) Control design for an adaptive optics system. In: Proceedings of the conference on decision & control, New Orleans, LA, USA, pp 3753–3756Google Scholar
  18. Kulcsár C, Raynaud HF, Petit C, Conan JM, Viaris de Lesegno P (2006) Optimal control, observers and integrators in adaptive optics. Opt Express 14:7464–7476CrossRefGoogle Scholar
  19. Kulkarni J, D’Andrea R, Brandl B (2002) Application of distributed control techniques to the adaptive secondary mirror of Cornell’s large Atacama telescope. In: SPIE astronomical telescopes and instrumentation conference, vol 4839, pp 750–756Google Scholar
  20. Laird P, Bergamasco R, Berube V, Borra EF, Ritcey AM, Rioux M, Robitaille N, Thibault S, Lande Vieira da Silva Jr., Yockell-Lelivre H (2003) Ferrofluid-based deformable mirrors: a new approach to AO using liquid mirrors. In: Wizinowich PL, Bonaccini D (eds) Adaptive Optical System Technologies II, Proceedings of SPIE, vol. 4839, the International Society for Optical Engineering Google Scholar
  21. Laird P, Caron N, Rioux M, Borra EF, Ritcey AM (2006) Ferrofluid adaptive mirrors. Appl Opt 45(15):3495–3500CrossRefGoogle Scholar
  22. Le Roux B, Conan JM, Kulcsar C, Raynaud HF, Mugnier LM, Fusco T (2004) Optimal control law for multiconjugate adaptive optics. J Opt Soc Am A 21:1261–1276CrossRefGoogle Scholar
  23. Looze DP (2006) Minimum variance control structure for adaptive optics systems. J Opt Soc Am A 23:603–612MathSciNetCrossRefGoogle Scholar
  24. Looze DP (2009) Linear quadratic Gaussian control for adaptive optics systems using a hybrid model. J Opt Soc Am 26(1):1–9CrossRefGoogle Scholar
  25. Looze DP (2010) Discrete time model for an adaptive optics system with input delay. Int J Contr 83(6):1217–1231MathSciNetzbMATHCrossRefGoogle Scholar
  26. Massioni P, Verhaegen M (2009) Distributed control for identical dynamically coupled system: a decomposition approach. IEEE Trans Automat Contr 54(1):124–135MathSciNetCrossRefGoogle Scholar
  27. Monirabbasi S, Gibson S (2010) Adaptive control in an adaptive optics experiment. J Opt Soc Am A 27(11):A84–A96CrossRefGoogle Scholar
  28. Montera D, Welsh B, Roggemann C, Ruck D (1997) Prediction of wavefront sensor slope measurement with artificial neural networks. Appl Opt 36:675–681CrossRefGoogle Scholar
  29. Paschall R, Anderson D (1993) Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. Appl Opt 32:6347–6358CrossRefGoogle Scholar
  30. Petit C, Conan JM, Kulcsár C, Raynaud HF (2009) Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis. J Opt Soc Am A 26(6):1307–1324CrossRefGoogle Scholar
  31. Poyneer L, Veran JP (2008) Predictive wavefront control for adaptive optics with arbitrary control loop delays. J Opt Soc Am A 25(7):1486–1496MathSciNetCrossRefGoogle Scholar
  32. Raynaud HF, Correia C, Kulcsar C, Conan JM (2011) Minimum variance control of astronomical adaptive systems with actuator dynamics under synchronous and asynchronous sampling. Int J Robust Nonlin Contr 21(7):768–789MathSciNetzbMATHCrossRefGoogle Scholar
  33. Roddier F (1999) Adaptive optics in astronomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Stein G, Gorinevsky DM (2005) Design of surface shape control for large two-dimensional array. IEEE Trans Contr Syst Technol 13:422–433CrossRefGoogle Scholar
  35. Tyson RK (2000) Adaptive optics engineering handbook. Marcel Dekker, New YorkGoogle Scholar
  36. Tyson RK (2011) Principles of adaptive optics. CRC Press, Boca RatonGoogle Scholar
  37. Von Bokern MA (1990) Design of a linear quadratic Gaussian control law for an adaptive optics system. MS Thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, OhioGoogle Scholar
  38. Voulgaris PG, Bianchini G, Bamieh B (2003) Optimal H2 controllers for spatially invariant systems with delayed communication requirements. Syst Contr Lett 50:347–361MathSciNetzbMATHCrossRefGoogle Scholar
  39. Wiberg DM, Max CE, Gavel DT (2004a) A spatial non-dynamic LQG controller: part 1, application to adaptive optics. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3326–3332Google Scholar
  40. Wiberg DM, Max CE, Gavel DT (2004b) A spatial non-dynamic LQG controller: part 2, theory. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3333–3338Google Scholar
  41. Zhu L, Sun P, Bartsch D, Freeman W, Fainman Y (1999) Adaptive control of a micromachines continuous-membrane deformable mirror for aberration compensation. Appl Opt 38:168–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Shanghai UniversityShanghaiChina, People’s Republic
  2. 2.University of TorontoTorontoCanada

Personalised recommendations