Adaptive Optics Systems

  • Zhizheng WuEmail author
  • Azhar Iqbal
  • Foued Ben Amara


This chapter presents an overview of adaptive optics (AO) systems, including a brief summary of their development history and their importance in high-resolution imaging systems. The first section of this chapter introduces the basic optical concepts of wavefronts and aberrations. The operating principle of AO systems and the primary components of these systems are then presented. Covered in the last section is a review of retinal imaging AO systems, including a brief review of the history of ophthalmic imaging systems and the requirements and challenges to their practical implementation using AO systems.


Optical Coherence Tomography Adaptive Optic Scan Laser Ophthalmoscopy Optical Aberration Adaptive Optic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez AW (1967) Two-element variable-power spherical lens, US Patent 3305294Google Scholar
  2. Artal P, Navarro R (1989) High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry. Opt Lett 14:1098–1100CrossRefGoogle Scholar
  3. Artal P, Chen L, Fernandez EJ, Singer B, Manzanera S, Williams DR (2004) Neural compensation of the eye’s optical aberrations. J Vis 4:281–287CrossRefGoogle Scholar
  4. Babcock HW (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65:229–236CrossRefGoogle Scholar
  5. Baudouin L, Prieur C, Guignard F, Arzelier D (2008) Robust control of a bimorph mirror for adaptive optics systems. Appl Opt 47:3637–3645CrossRefGoogle Scholar
  6. Berkefeld T, Soltau D, Schmidt D, von der Lühe O (2010) Adaptive optics development at the German solar telescopes. Appl Opt 49(31):G155–G166CrossRefGoogle Scholar
  7. Born M, Wolf E (1997) Principles of optics. Cambridge University Press, CambridgeGoogle Scholar
  8. Borra EF (2009) Liquid mirrors in engineering. Optics and Photonics News, pp 14–17, September 2009Google Scholar
  9. Borra EF, Brousseau D, Cliche M, Parent J (2008) Aberration correction with a magnetic liquid active mirror. Mon Not R Astron Soc 391(4):1925–1930CrossRefGoogle Scholar
  10. Brousseau D, Borra EF, Ruel HJ, Parent J (2006) A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations. Opt Express 14:11486–11493CrossRefGoogle Scholar
  11. Brousseau D, Borra EF, Rochette M, Landry DB (2010) Linearization of the response of a 91-actuator magnetic liquid deformable mirror. Opt Express 18(8):8239–8250CrossRefGoogle Scholar
  12. Carroll J, Neitz M, Hofer H, Neitz J, Williams DR (2004) Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci USA 101:8461–8466CrossRefGoogle Scholar
  13. Chen L, Kruger PB, Hofer H, Singer B, Williams DR (2006) Accommodation with higher-order monochromatic aberrations corrected with adaptive optics. J Opt Soc Am A 23:1–8CrossRefGoogle Scholar
  14. Chen DC, Jones SM, Silva DA, Olivier SS (2007) High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. J Opt Soc Am A 24:1305–1312CrossRefGoogle Scholar
  15. Correia C, Raynaud HF, Kulcsar C, Conan JM (2010a) Minimum variance control for woofer tweeter systems in adaptive optics. J Opt Soc Am A 27(11):133–144CrossRefGoogle Scholar
  16. Correia C, Raynaud HF, Kulcsar C, Conan JM (2010b) On the optimal reconstruction and control of adaptive optical systems with mirror dynamics. J Opt Soc Am A 27(2):333–349CrossRefGoogle Scholar
  17. Dai G (2008) Wavefront optics for vision correction, vol PM179, SPIE press monograph. SPIE Publications, BellinghamCrossRefGoogle Scholar
  18. Dalimier E, Dainty C (2005) Comparative analysis of deformable mirrors for ocular adaptive optics. Opt Express 13:4275–4285CrossRefGoogle Scholar
  19. Devaney N, Dalimier E, Farrell T, Coburn D, Mackey R, Mackey D, Laurent F, Daly E, Dainty C (2008) Correction of ocular and atmospheric wavefront: a comparison of the performance of various deformable mirrors. Appl Opt 47(35):6550–6562CrossRefGoogle Scholar
  20. Doble N, Miller DT (2006) Wavefront correctors for vision science. In: Porter J, Queener H, Lin J, Thorn K, Awwal A (eds) Adaptive optics for vision science: principles, practices, design and applications. Wiley, New YorkGoogle Scholar
  21. Doble N, Williams DR (2004) The applications of MEMS technology for AO in vision science. IEEE J Sel Top Quantum Electron 10(3):629–635CrossRefGoogle Scholar
  22. Downie J, Goodman W (1989) Optimal wavefront control for adaptive segmented mirrors. Appl Opt 28:5326–5332CrossRefGoogle Scholar
  23. Dreher AW, Bille JF, Weinreb RN (1989) Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt 28:804–808CrossRefGoogle Scholar
  24. Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, Carroll J (2011) Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2(7):1864–1876CrossRefGoogle Scholar
  25. Ellenbroek R, Verhaegen M, Doelman N, Hamelinck R, Rosielle N, Steinbuch M (2006) Distributed control in adaptive optics: deformable mirror and turbulence modeling. Proc SPIE 6272:62723KCrossRefGoogle Scholar
  26. Evans JW, Zawadzki RJ, Jones SM, Olivier SS, Werner JS (2009) Error budget analysis for an adaptive optics optical coherence tomography system. Opt Express 17(16):13768–13784CrossRefGoogle Scholar
  27. Feinleib J (1982) Proposal 82–P4. Adaptive Optics Associates, CambridgeGoogle Scholar
  28. Ferguson RD, Zhong Z, Hammer DX, Mujat M, Patel AH, Deng C, Zou W, Burns SS (2010) Adaptive optics scanning laser ophthalmoscope with integrated wide field retinal imaging and tracking. J Opt Soc Am A 27(11):265–277CrossRefGoogle Scholar
  29. Fernandez EJ, Hermann B, Povazay B, Unterhuber A, Sattmann H, Hofer B, Ahnelt PK, Drexler W (2008) Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express 16:11083–11094CrossRefGoogle Scholar
  30. Fernandez EJ, Prieto PM, Artal P (2009) Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator. Opt Express 17(13):11013–11025CrossRefGoogle Scholar
  31. Ficocelli M, Ben Amara F (2012) Online tuning for retinal imaging adaptive optics systems. IEEE Trans Control Syst Technol 20(3):747–754CrossRefGoogle Scholar
  32. Fraanje R, Massioni P, Verhaegen M (2010) A decomposition approach to distributed control of dynamic deformable mirrors. Int J Optomechatron 4(3):269–284CrossRefGoogle Scholar
  33. Fried DL (1966) Limiting resolution looking down through the atmosphere. J Opt Soc Am 56:1380–1384CrossRefGoogle Scholar
  34. Godara P, Dubis AM, Roorda A, Duncan JL, Carroll J (2010) Adaptive optics retinal imaging: emerging clinical applications. Optom Vis Sci 87(12):930–941CrossRefGoogle Scholar
  35. Goodman JW (2004) Introduction to Fourier optics. Roberts & Company, ColoradoGoogle Scholar
  36. Greenwood DP (1977) Bandwidth specification for adaptive optics systems. J Opt Soc Am 67:390–393CrossRefGoogle Scholar
  37. Guzmán D, Juez F, Myers R, Guesalaga A, Lasheras FS (2010) Modeling a MEMS deformable mirror using non-parametric estimation techniques. Opt Express 18(20):21356–21369CrossRefGoogle Scholar
  38. Hampson KM (2008) Adaptive optics and vision. J Mod Opt 55(21):3425–3467CrossRefGoogle Scholar
  39. Happer W, MacDonald GJ, Max CE, Dyson FJ (1994) Atmospheric turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere. J Opt Soc Am 11(1):263–276CrossRefGoogle Scholar
  40. Hardy JW (1998) Adaptive optics for astronomical telescopes. Oxford University Press, New YorkGoogle Scholar
  41. Hardy JW, Lefebvre JE, Koliopoulos CL (1977) Real-time atmospheric compensation. J Opt Soc Am 67:360–369CrossRefGoogle Scholar
  42. Hart M (2010) Recent advances in astronomical adaptive optics. Appl Opt 49(16):D17–D29CrossRefGoogle Scholar
  43. Hecht E (2002) Optics. Addison Wesley, San FranciscoGoogle Scholar
  44. Helmbrecht MA, Juneau T (2007) Piston-tip-tilt positioning of a segmented MEMS deformable mirror. Proc SPIE 6467:64670MCrossRefGoogle Scholar
  45. Hinnen K, Verhaegen M, Doelman N (2007) Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control. J Opt Soc Am A 24:1714–1725CrossRefGoogle Scholar
  46. Hinnen K, Verhaegen M, Doelman N (2008) A data driven H2 optimal control approach for adaptive optics. IEEE Trans Control Syst Technol 16(3):381–389CrossRefGoogle Scholar
  47. Hofer H, Artal P, Singer B, Aragon JL, Williams DR (2001a) Dynamics of the eye’s aberration. J Opt Soc Am A 18(3):497–505CrossRefGoogle Scholar
  48. Hofer H, Chen L, Yoon GY, Singer B, Yamauchi Y, Williams DR (2001b) Improvement in retinal image quality with dynamic correction of the eye’s aberrations. Opt Express 8:631–643CrossRefGoogle Scholar
  49. Huang J, Looze D, Denis N, Castanon D, Wirth A (1995a) Dynamic modeling and identification of an adaptive optics system. In: Proceedings of the 4th IEEE conference on control applications, Albany, NY, USA, pp 456–463Google Scholar
  50. Huang J, Looze D, Denis N, Castanon D, Wirth A (1995b) Control design for an adaptive optics system. In: Proceedings of the IEEE conference on decision and control, New Orleans, LA, USA, pp 3753–3756Google Scholar
  51. Huang H, Inoue T, Tanaka H (2011) Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system. Opt Express 19(16):15026–15040CrossRefGoogle Scholar
  52. Iqbal A, Ben Amara F (2007) Modeling of a magnetic fluid deformable mirror for retinal imaging adaptive optics systems. Int J Optomechatron 1(2):180–208CrossRefGoogle Scholar
  53. Iqbal A, Ben Amara F (2008) Modeling and experimental evaluation of a circular magnetic-fluid deformable mirror. Int J Optomechatron 2(2):126–143CrossRefGoogle Scholar
  54. Iqbal A, Wu Z, Ben Amara F (2009) Closed-loop control of magnetic fluid deformable mirrors. Opt Express 17(21):18957–18970CrossRefGoogle Scholar
  55. Iqbal A, Wu Z, Ben Amara F (2010) Mixed sensitivity H control of magnetic fluid deformable mirrors. IEEE/ASME Trans Mechatron 15(4):548–556CrossRefGoogle Scholar
  56. Kellerer A (2010) Curvature sensors: noise and its propagation. J Opt Soc Am A 27:A29–A36CrossRefGoogle Scholar
  57. Kocaoglu OP, Lee S, Jonnal RS, Wang Q, Herde AE, Derby JC, Gao W, Miller DT (2011) Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express 2(4):748–763CrossRefGoogle Scholar
  58. Kreyszig E (1993) Advanced engineering mathematics. Wiley, New YorkzbMATHGoogle Scholar
  59. Kulcsár C, Raynaud HF, Petit C, Conan JM, de Lesegno Viaris P (2006) Optimal control, observers and integrators in adaptive optics. Opt Express 14:7464–7476CrossRefGoogle Scholar
  60. Li C, Sredar N, Ivers KM, Queener H, Porter J (2010) A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system. Opt Express 18(16):16671–16684CrossRefGoogle Scholar
  61. Liang J, Williams DR (1997) Aberration and retinal image quality of the normal human eye. J Opt Soc Am A 14(11):2873–2883CrossRefGoogle Scholar
  62. Liang JZ, Grimm B, Goelz S, Bille JF (1994) Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor. J Opt Soc Am A 11:1949–1957CrossRefGoogle Scholar
  63. Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A 14(11):2884–2892CrossRefGoogle Scholar
  64. Liu YT, Gibson JS (2007) Adaptive control in adaptive optics for directed energy systems. Opt Eng 46(4):046601CrossRefGoogle Scholar
  65. Looze DP (2009) Linear quadratic Gaussian control for adaptive optics systems using a hybrid model. J Opt Soc Am 26(1):1–9CrossRefGoogle Scholar
  66. Love GD, Kirby AK, Ramsey RA (2010) Sub-millisecond, high stroke phase modulation using polymer network liquid crystals. Opt Express 18(7):7384–7389CrossRefGoogle Scholar
  67. Manzanera S, Helmbrecht MA, Kempf CJ, Roorda A (2011) MEMS segmented-based adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 2(5):1204–1217CrossRefGoogle Scholar
  68. Miller DT, Williams DR, Morris GM, Liang JZ (1996) Images of cone photoreceptors in the living human eye. Vision Res 36:1067–1079CrossRefGoogle Scholar
  69. Monirabbasi S, Gibson S (2010) Adaptive control in an adaptive optics experiment. J Opt Soc Am A 27(11):A84–A96CrossRefGoogle Scholar
  70. Mu Q, Cao Z, Hu L, Liu Y, Peng Z, Xuan L (2010) Novel spectral range expansion method for liquid crystal adaptive optics. Opt Express 18(21):21687–21696CrossRefGoogle Scholar
  71. Mujat M, Ferguson RD, Iftimia N, Hammer DX (2009) Compact adaptive optics line scanning ophthalmoscope. Opt Express 17(12):10242–10258CrossRefGoogle Scholar
  72. Mujat M, Ferguson RD, Patel AH, Iftimia N, Lue N, Hammer DX (2010) High resolution multimodal clinical ophthalmic imaging system. Opt Express 18(11):11607–11621CrossRefGoogle Scholar
  73. Ödlund E, Raynaud HF, Kulcsár C, Harms F, Levecq X, Martins F, Chateau N, Podoleanu AG (2010) Control of an electromagnetic deformable mirror using high speed dynamics characterization and identification. Appl Opt 49(31):G120–G128CrossRefGoogle Scholar
  74. Paschall R, Anderson D (1993) Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. Appl Opt 32:6347–6358CrossRefGoogle Scholar
  75. Petit C, Conan JM, Kulcsár C, Raynaud HF (2009) Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis. J Opt Soc Am A 26(6):1307–1324CrossRefGoogle Scholar
  76. Potsaid B, Wen JT (2008) Adaptive scanning optical microscope: large field of view and high-resolution imaging using a MEMS deformable mirror. J Micro/Nanolithogr MEMS MOEMS 7(2):021009Google Scholar
  77. Prieto PM, Fernandez EJ, Manzanera S, Artal P (2004) Adaptive optics with a programmable phase modulator: applications in the human eye. Opt Express 12:4059–4071CrossRefGoogle Scholar
  78. Raynaud HF, Correia C, Kulcsar C, Conan JM (2011) Minimum variance control of astronomical adaptive systems with actuator dynamics under synchronous and asynchronous sampling. Int J Robust Nonlinear Control 21(7):768–789MathSciNetzbMATHCrossRefGoogle Scholar
  79. Roddier F (1999) Adaptive optics in astronomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  80. Rodrigues G, Bastaits R, Roose S, Stockman Y, Gebhardt S, Schoenecker A (2009) Modular bimorph mirrors for adaptive optics. Opt Eng 48:034001CrossRefGoogle Scholar
  81. Roggemann MC, Welsh BM (1996) Imaging through turbulence. CRC-Press, Boca RatonGoogle Scholar
  82. Roorda A (2002) Human visual system – image formation. In: Hornak JP (ed) Encyclopedia of imaging science and technology, vol 1. Wiley, New York, pp 539–557Google Scholar
  83. Roorda A, Williams DR (1999) The arrangement of the three cone classes in the living human eye. Nature 397:520–522CrossRefGoogle Scholar
  84. Roorda A, Williams DR (2002) Optical fiber properties of individual human cones. J Vis 2:404–412CrossRefGoogle Scholar
  85. Rubin ML (1986) Spectacles: past, present and future. Surv Ophthalmol 30:321–327CrossRefGoogle Scholar
  86. Saleh BE, Teich MC (2007) Fundamentals of photonics. Wiley, New YorkGoogle Scholar
  87. Scharmer GB, Dettori P, L¨ofdahl MG, Shand M (2002) Adaptive optics and correlation tracker systems for the new Swedish solar telescope. In: Keil S, Avakyan S (eds) Innovative telescopes and instrumentation for solar astrophysics, Proceedings of SPIE, vol 4853–52, SPIE press, BellinghamGoogle Scholar
  88. Seidel L (1856) Zur Dioptrik Uber die Entwicklung der Glieder 3ter Ordnung. Astron Nachr 43:289CrossRefGoogle Scholar
  89. Smirnov MS (1961) Measurement of the wave aberration of the human eye. Biophysics 6:687–703Google Scholar
  90. Stein G, Gorinevsky DM (2005) Design of surface shape control for large two-dimensional array. IEEE Trans Control Syst Technol 13:422–433CrossRefGoogle Scholar
  91. Thibos L, Applegate RA, Schweigerling JT, Webb R (2000) Standards for reporting the optical aberrations of eyes. In: Vision science and its applications. Optical Society of America, Washington, DC, pp 232–244Google Scholar
  92. Torti C, Považay B, Hofer B, Unterhuber A, Carroll J, Ahnelt PK, Drexler W (2009) Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt Express 17(22):19382–19400CrossRefGoogle Scholar
  93. Tyson RK (2000) Adaptive optics engineering handbook. Marcel Dekker, New YorkGoogle Scholar
  94. Tyson RK (2011) Principles of adaptive optics. CRC Press, Boca RatonGoogle Scholar
  95. Vdovin G, Soloviev O, Samokhin A, Loktev M (2008) Correction of low order aberrations using continuous deformable mirrors. Opt Express 16:2859–2866CrossRefGoogle Scholar
  96. Verpoort S, Wittrock U (2010) Actuator patterns for unimorph and bimorph deformable mirrors. Appl Opt 49:G37–G46CrossRefGoogle Scholar
  97. Vorontsov M, Weyrauch T, Carhart G, Beresnev L (2010) Adaptive optics for free space laser communications. In: Applications of lasers for sensing and free space communications, vol LSMA1, OSA technical digest series (CD). Optical Society of America, New YorkGoogle Scholar
  98. Voulgaris PG, Bianchini G, Bamieh B (2003) Optimal H2 controllers for spatially invariant systems with delayed communication requirements. Syst Control Lett 50:347–361MathSciNetzbMATHCrossRefGoogle Scholar
  99. Webb RH, Albanese MJ, Zhou Y, Bifano T, Burns SA (2004) Stroke amplifier for deformable mirrors. Appl Opt 43:5330–5333CrossRefGoogle Scholar
  100. Wiberg DM, Max CE, Gavel DT (2004a) A spatial non-dynamic LQG controller: part 1, application to adaptive optics. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3326–3332Google Scholar
  101. Wiberg DM, Max CE, Gavel DT (2004b) A spatial non-dynamic LQG controller: part 2, theory. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, USA, pp 3333–3338Google Scholar
  102. Zawadzki RJ, Choi SS, Fuller AR, Evans JW, Hamann B, Werner JS (2009) Cellular resolution volumetric in vivo retinal imaging with adaptive optics optical coherence tomography. Opt Express 17(5):4084–4094CrossRefGoogle Scholar
  103. Zawadzki RJ, Jones SM, Pilli S, Balderas-Mata S, Kim DY, Olivier SS, Werner JS (2011) Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed Opt Express 2(6):1674–1686CrossRefGoogle Scholar
  104. Zhang Y, Rha J, Jonnal R, Miller DT (2005) Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express 13:4792–4811CrossRefGoogle Scholar
  105. Zhang Y, Poonja S, Roorda A (2006) MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt Lett 31:1268–1270CrossRefGoogle Scholar
  106. Zou W, Qi X, Burns SA (2011) Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed Opt Express 2(7):1986–2004CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Shanghai UniversityShanghaiChina, People’s Republic
  2. 2.University of TorontoTorontoCanada

Personalised recommendations