Skip to main content

Crust and Mantle Structure Beneath the Azores Hotspot—Evidence from Geophysics

  • Chapter
  • First Online:
Volcanoes of the Azores

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

The Azores hotspot marks the triple junction between the North American, Eurasian, and African plates, and is responsible for the ~20 Ma Azores plateau, and ongoing, off-axis volcanism today. The dynamics of the interaction between the Azores hotspot and the slow-spreading North Atlantic ridge has led to short wavelength V-shaped bathymetric and geochemical anomalies along the mid-ocean ridge, suggesting variations in the flow of mantle plume material towards the southwest. The depth extent of the Azores plume is unclear, or indeed whether it constitutes a traditional plume at all. Surface-wave models have suggested that the “plume” is confined to the upper 250–300 km of the mantle, suggesting either a shallow origin to the Azores hotspot, or that the plume is waning. In contrast, recent finite-frequency body-wave tomography has suggested that the Azores conduit may extend to the core-mantle boundary, and that the Azores, Canary, and Cape Verde hotspots may have a common origin under West Africa. Here we assess geophysical constraints on crustal and mantle structure beneath the Azores hotspot. Geochemical constraints and body-wave tomography results argue for a deep origin of the Azores hotspot. Radial anisotropy suggests significant vertical flow in the vicinity of the hotspot, and this is consistent with the geoid and gravity field. Calculations of plume conduit dynamics in simulations of the global mantle flow field suggest that the present conduit tilts towards West Africa, as observed in the body-wave tomography, and support a common origin for the Azores, Canary, and Cape Verde plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asimow, P. D., & Langmuir, C. H. (2003). The importance of water to oceanic mantle melting regimes. Nature, 421(6925), 815–820.

    Google Scholar 

  • Barruol, G., & Sigloch, K. (2013). Investigating La Réunion Hot Spot From Crust to Core. Eos, Transactions American Geophysical Union, 94(23), 205–207.

    Article  Google Scholar 

  • Beier, C., Haase, K. M., & Turner, S. P. (2012). Conditions of melting beneath the Azores. Lithos, 144, 1–11.

    Google Scholar 

  • Bjarnason, I. T., Wolfe, C. J., Solomon, S. C., & Gudmundson, G. (1996). Initial results from the ICEMELT Experiment: Body-wave delay times and shear-wave splitting across Iceland. Geophysical Research Letters, 23(5), 459–462.

    Google Scholar 

  • Bonatti, E. (1990). Not so hot “hot spots” in the oceanic mantle. Science, 250(4977), 107–111.

    Google Scholar 

  • Bourdon, B., Langmuir, C. H., & Zindler, A. (1996). Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37° 30′ and 40° 30′ N: The U Th disequilibrium evidence. Earth and Planetary Science Letters, 142(1), 175–189.

    Google Scholar 

  • Bourdon, B., Turner, S. P., & Ribe, N. M. (2005). Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth and Planetary Science Letters, 239(1), 42–56.

    Article  Google Scholar 

  • Bowin, C., Thompson, G., & Schilling, J. G. (1984). Residual geoid anomalies in Atlantic Ocean Basin: Relationship to mantle plumes. Journal of Geophysical Research, 89(B12), 9905–9918.

    Article  Google Scholar 

  • Canas, J. A., & Mitchell, B. J. (1981). Rayleigh wave attenuation and its variation across the Atlantic Ocean. Geophysical Journal International, 67, 159–176.

    Article  Google Scholar 

  • Cande, S. C., & Kent, D. V. (1992). A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 97(B10), 13917–13951.

    Google Scholar 

  • Cannat, M., Briais, A., Deplus, C., Escartı́n, J., Georgen, J., Lin, J., da Silva, P. (1999). Mid-Atlantic Ridge–Azores hotspot interactions: Along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth and Planetary Science Letters, 173(3), 257–269.

    Google Scholar 

  • Cochran, J. R., & Talwani, M. (1978). Gravity anomalies, regional elevation, and the deep structure of the North Atlantic. Journal of Geophysical Research, 83(B10), 4907–4924.

    Article  Google Scholar 

  • De Mets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.

    Google Scholar 

  • Detrick, R. S., Needham, H. D., & Renard, V. (1995). Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33 N and 40 N. Journal of Geophysical Research, 100(B3), 3767–3787.

    Article  Google Scholar 

  • Dias, N. A., Matias, L., Lourenço, N., Madeira, J., Carrilho, F., & Gaspar, J. L. (2007). Crustal seismic velocity structure near Faial and Pico Islands (AZORES), from local earthquake tomography. Tectonophysics, 445(3), 301–317.

    Article  Google Scholar 

  • Dosso, L., Bougault, H., Langmuir, C., Bollinger, C., Bonnier, O., & Etoubleau, J. (1999). The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31–41N). Earth and Planetary Science Letters, 170(3), 269–286.

    Google Scholar 

  • Foulger, G. R. (2007). The “plate” model for the genesis of melting anomalies. In G. R. Foulger & D. M. Jurdy (Eds.), Plates, plumes, and planetary processes: Geological Society of America. Special Paper 430 (pp. 1–28).

    Google Scholar 

  • Foulger, G. R., Pritchard, M. J., Julian, B. R., Evans, J. R., Allen, R. M., Nolet, G., et al. (2001). Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle. Geophysical Journal International, 146(2), 504–530.

    Article  Google Scholar 

  • Geissler, W. (2013). Electromagnetic, gravimetric and seismic measurements to investigate the Tristan da Cunha hot spot and its role in the opening of the South Atlantic Ocean (MARKE)—Cruise No. MSM24—December 27, 2012–January 21, 2013—Walvis Bay (Namibia)—Cape Town (South Africa). In MARIA S. MERIAN-Berichte (cruise reports); MSM24, pp. 1–56. https://doi.org/10.2312/cr_msm24, https://getinfo.de/app/details?id=awi:doi~10.2312%252Fcr_msm24.

  • Gente, P., Dyment, J., Maia, M., & Goslin, J. (2003). Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: Emplacement and rifting of the hot spot-derived plateaus. Geochemistry, Geophysics, Geosystems, 4(10), 8514. https://doi.org/10.1029/2003GC000527.

    Article  Google Scholar 

  • Goslin, J., & Party, T. S. (1999). Extent of Azores plume influence on the Mid-Atlantic Ridge north of the hotspot. Geology, 27, 991–994.

    Article  Google Scholar 

  • Goslin, J., Thirot, J.-L., Noel, O., & Francheteau, J. (1998). Slow-ridge/hotspot interactions from global gravity, seismic tomography and 87Sr/86Sr isotope data. Geophysical Journal International, 135, 700–710.

    Article  Google Scholar 

  • Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research: Solid Earth, 99(B6), 11591–11621.

    Google Scholar 

  • Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). High resolution global tomography: A snapshot of convection in the Earth. Geological Society of America Today, 7(4).

    Google Scholar 

  • Gripp, A. E., & Gordon, R. G. (2002). Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150, 321–361.

    Article  Google Scholar 

  • Honda, S., & Tanimoto, T. (1987). Regional 3D heterogeneities by waveform inversion-application to the Atlantic area. Geophysical Journal International, 94, 737–757.

    Article  Google Scholar 

  • King, S. D. (2005). North Atlantic topographic and geoid anomalies: The result of a narrow ocean basin and cratonic roots? Geological Society of America Special Papers, 388, 653–664.

    Google Scholar 

  • Kuo, B. Y., & Forsyth, D. W. (1992). A search for split SKS waveforms in the North Atlantic. Geophysical Journal International, 108(2), 557–574.

    Article  Google Scholar 

  • Lebedev, S., & van der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173, 505–518.

    Article  Google Scholar 

  • Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., et al. (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. Report no. NASA/TP-1998-206861. National Aeronautics and Space Administration.

    Google Scholar 

  • Lerch, F. O., Nerem, R. S., Putney, B. H., Felsentreger, T. L., Sanchez, B. V., Marshall, J. A., ... & Pavlis, E. C. (1994). A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3. Journal of Geophysical Research, 99, 2815–2815.

    Google Scholar 

  • Li, X., Kind, R., & Yuan, X. (2003). Seismic study of upper mantle and transition zone beneath hotspots. Physics of the Earth and Planetary Interiors, 136, 79–92.

    Article  Google Scholar 

  • Lourenco, N. L. J. F., Miranda, J. M., Luis, J. F., Ribeiro, A., Victor, L. M., Madeira, J., & Needham, H. D. (1998). Morpho-tectonic analysis of the Azores Volcanic Plateau from a new bathymetric compilation of the area. Marine Geophysical Researches, 20(3), 141–156.

    Google Scholar 

  • Luis, J. F., Miranda, J. M., Galdeano, A., & Patriat, P. (1998). Constraints on the structure of the Azores spreading center from gravity data. Marine Geophysical Researches, 20(3), 157–170.

    Google Scholar 

  • Luis, J. F., & Neves, M. C. (2006). The isostatic compensation of the Azores Plateau: A 3D admittance and coherence analysis. Journal of Volcanology and Geothermal Research, 156(1), 10–22.

    Article  Google Scholar 

  • Madeira, J., & Ribeiro, A. (1990). Geodynamic models for the Azores triple junction: A contribution from tectonics. Tectonophysics, 184(3), 405–415.

    Google Scholar 

  • Madureira, P., Moreira, M., Mata, J., & Allègre, C. J. (2005). Primitive neon isotopes in Terceira Island (Azores archipelago). Earth and Planetary Science Letters, 233, 429–440.

    Article  Google Scholar 

  • Marillier, F., & Mueller, S. (1982). Structure of the upper mantle in the Northeastern Atlantic close to the azores-gibraltar ridge from surface-wave and body-wave observations. Tectonophysics, 90, 195–213.

    Google Scholar 

  • Minster, J. B., & Jordan, T. H. (1978). Present-day plate motions. Journal of Geophysical Research: Solid Earth, 83(B11), 5331–5354.

    Google Scholar 

  • Miranda, J. M., Victor, L. M., Simoes, J. Z., Luis, J. F., Matias, L., Shimamura, H., ... & Lepine, J. C. (1998). Tectonic setting of the Azores Plateau deduced from an OBS survey. Marine Geophysical Researches, 20(3), 171–182.

    Google Scholar 

  • Monnereau, M., & Cazenave, A. (1990). Depth and geoid anomalies over oceanic hotspot swells: A global survey. Journal of Geophysical Research: Solid Earth (1978–2012), 95(B10), 15429–15438.

    Google Scholar 

  • Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7, Q11007. https://doi.org/10.1029/2006GC001248.

    Article  Google Scholar 

  • Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R., & Hung, S.-H. (2004). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.

    Article  Google Scholar 

  • Moreira, M., Doucelance, R., Kurz, M. D., Dupré, B., & Allègre, C. J. (1999). Helium and lead isotope geochemistry of the Azores Archipelago. Earth and Planetary Science Letters, 169(1), 189–205.

    Article  Google Scholar 

  • Morgan, W. J. (1971). Convection plumes in the lower mantle. Nature, 230, 42–43.

    Article  Google Scholar 

  • Pilidou, S., Priestley, K., Gudmundsson, Ó., & Debayle, E. (2004). Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography: The Iceland and Azores plumes. Geophysical Journal International, 159, 1057–1076.

    Article  Google Scholar 

  • Pilidou, S., Priestley, K., Debayle, E., Gudmundsson, O. (2005). Rayleigh wave tomography in the North Atlantic: High resolution images of the Iceland, Azores and Eifel mantle plumes. Lithos, 79, 453–474.

    Google Scholar 

  • Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (1999). Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286, 1925–1928.

    Article  Google Scholar 

  • Ritsema, J., van Heijst, H. J., & Woodhouse, J. H. (2004). Global transition zone tomography. Journal Geophysical Research, 109, 14p.

    Article  Google Scholar 

  • Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N., & Hawkesworth, C. (2002). Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature, 420(6913), 304–307.

    Google Scholar 

  • Schilling, J.-G. (1991). Fluxes and excess temperature of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352, 397–403.

    Article  Google Scholar 

  • Schilling, J.-G., Zajac, M., Evans, R., Johnston, T., White, W., Devine, J. D., et al. (1983). Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29°N to 73°. American Journal of Science, 283, 510–586.

    Article  Google Scholar 

  • Schutt, D. L., Solomon, S. C. Burkett, P. G. (2002). Evidence for a Thinned Mantle Transition Zone beneath the Azores Hotspot. American Geophysical Union, Fall Meeting Abstract #S11A-1125

    Google Scholar 

  • Searle, R. C. (1976). Lithospheric structure of the Azores Plateau from Rayleigh- wave dispersion. Geophysical Journal International, 44, 537–546.

    Article  Google Scholar 

  • Senos, M. L., & Nunes, J. C. (1993). Constituição da litosfera Atlântica na região das ilhas dos Açores. I.N.M.G, Lisboa.

    Google Scholar 

  • Senos, M. L., Nunes, J. C., & Moreira, V. S. (1980). Estudos da estrutura da crosta e manto superior nos Açores. I.N.M.G, Lisboa.

    Google Scholar 

  • Shen, Y., Solomon, S. C., Bjarnason, I. T., & Wolfe, C. J. (1998). Seismic evidence for a lower-mantle origin of the Iceland plume. Nature, 395(6697), 62–65.

    Article  Google Scholar 

  • Silveira, G., & Stutzmann, E. (2002). Anisotropic tomography of the Atlantic Ocean. Physics of the Earth and Planetary Interiors, 132, 237–248.

    Article  Google Scholar 

  • Silveira, G., Stutzmann, E., Davaille, A., Montagner, J. P., Mendes-Victor, L., & Sebai, A. (2006). Azores hotspot signature in the upper mantle. Journal of Volcanology and Geothermal Research, 156(1), 23–34.

    Article  Google Scholar 

  • Silveira, G., Stutzmann, E., Griot, D., Montagner, J. P., & Mendes, V. L. (1998). Anisotropic tomography of the Atlantic Ocean from Rayleigh surface waves. Physics of the Earth and Planetary Interiors, 106, 257–273.

    Article  Google Scholar 

  • Silveira, G., van der Lee, S., Stutzmann, E., Matias, L., James, D., Burkett, P., et al. (2002). Coordinated seismic experiment in the Azores. ORFEUS Newsletter, 4(2), 10.

    Google Scholar 

  • Silveira, G., Vinnik, L., Stutzmann, E., Farra, V., Kiselev, S., & Morais, I. (2010). Stratification of the Earth beneath the Azores from P and S receiver functions. Earth and Planetary Science Letters, 299, 91–103.

    Article  Google Scholar 

  • Sleep, N. H. (1990). Hotspots and mantle plumes: Some henomenology. Journal of Geophysical Research: Solid Earth (1978–2012), 95(B5), 6715–6736.

    Google Scholar 

  • Steinberger, B. (2000). Plumes in a convecting mantle: Models and observations for individual hotspots. Journal of Geophysical Research: Solid Earth, 105(B5), 11127–11152.

    Google Scholar 

  • Steinmetz, L., Hirn, A., Sapin, M., Whitmarsh, R., & Moreira, V. (1976). Zone of P wave attenuation beneath the crest of Mid-Atlantic ridge. Bulletin de la Société Géologique de France, 4(7), 931–936.

    Article  Google Scholar 

  • Steinmetz, L., Whitmarsh, R., & Moreira, V. (1977). Upper mantle structure beneath mid- Atlantic ridge north of Azores based on observations of compressional waves. Geophysical Journal International, 50(2), 353–380.

    Article  Google Scholar 

  • Suetsugu, D., Shiobara, H., Sugioka, H., Barruol, G., & Reymond, D. (2005). Probing South Pacific mantle plumes with ocean bottom seismographs. Eos, 86(44).

    Google Scholar 

  • Thibaud, R., Gente, P. & Maia, M. (1997). A systematic analysis of the Mid-Atlantic Ridge morphology and gravity between 15°N and 40°N, Journal of Geophysical Research, 103(B10), 24 223–24 243.

    Google Scholar 

  • Van der Hilst, R. D., & de Hoop, M. V. (2005). Banana-doughnut kernels and mantle tomography. Geophysical Journal International, 163, 956–961.

    Article  Google Scholar 

  • Webb, S. C. (1998). Broadband seismology and noise under the ocean. Reviews of Geophysics, 36, 105–142.

    Article  Google Scholar 

  • Weidner, D. J. (1974). Rayleigh wave phase velocities in the Atlantic Ocean. Geophysical Journal International, 36, 105–139.

    Article  Google Scholar 

  • Whitehead, J. A. (1982). Instabilities of fluid conduits in a flowing earth—are plates lubricated by the asthenosphere? Geophysical Journal International, 70(2), 415–433.

    Google Scholar 

  • Wolfe, C. J., Solomon, S. C., Laske, G., Collins, J. A., Detrick, R. S., Orcutt, J. A., et al. (2009). Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science, 326(5958), 1388–1390.

    Article  Google Scholar 

  • Yang, T., Shen, Y., van der Lee, S., Solomon, S. C., & Hung, S.-H. (2006). Upper mantle structure beneath the Azores hotspot from finite frequency seismic tomography. Earth and Planetary Science Letters, 250, 11–26.

    Article  Google Scholar 

  • Yu, D., Fontignie, D., & Schilling, J.-G. (1997). Mantle plume—ridge interactions in the Central North Atlantic: a Nd isotope study of Mid-Atlantic Ridge basalts from 30°N to 50°. Earth and Planetary Science Letters, 146, 259–272.

    Article  Google Scholar 

  • Zandomeneghi, D., Almendros, J., Ibáñez, J. M., & Saccorotti, G. (2008). Seismic tomography of Central São Miguel, Azores. Physics of the Earth and Planetary Interiors, 167, 8–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Neill, C., Sigloch, K. (2018). Crust and Mantle Structure Beneath the Azores Hotspot—Evidence from Geophysics. In: Kueppers, U., Beier, C. (eds) Volcanoes of the Azores. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32226-6_5

Download citation

Publish with us

Policies and ethics