Skip to main content

The “Azores Geosyndrome” and Plate Tectonics: Research History, Synthesis, and Unsolved Puzzles

  • Chapter
  • First Online:
Book cover Volcanoes of the Azores

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

The Azores volcanic archipelago, the Azores Plateau (AP) and the Azores triple junction (ATJ) between the Eurasia, North America and Nubia plates occupy the summit of a regional feature we refer to as the ‘Azores Geosyndrome’. Included are anomalies in crustal thickness, rock composition, basement depth, plate boundary morphology, seismicity, gravity and geoid, and upper mantle seismic velocity structure, and there are many similarities between the Azores and Iceland geosyndromes. The location of the Azores in the central North Atlantic, technological advances in marine geophysics as well as logistic, geomilitary and geopolitical motivations and advanced research of island geology/volcanology have contributed to make the ATJ the most studied oceanic triple plate junction. However, a unified understanding of the Azores Geosyndrome awaits future deep crustal boreholes (particularly on the AP) and regional sea-floor seismometer arrays to resolve the seismic velocity structure below the AP down to the middle and perhaps lower mantle. Whereas a deep mantle plume appears unlikely to exist below the Azores, it cannot yet be excluded (see O’Neill and Sigloch, Chapter “Crust and Mantle Structure Beneath the Azores Hotspot—Evidence from Geophysics”, and Moreira et al., Chapter “Noble Gas Constraints on the Origin of the Azores Hotspot”). What is already clear is that the development and evolution of the Azores Geosyndrome has involved dynamic interactions among the North America-Nubia-Eurasia plates and at least the uppermost mantle below those plates—even far from the ATJ area. The plate boundary reorganization that resulted in the triple plate junction jumping from the end of King’s Trough south to create the ATJ was largely complete by Chron 6C (23 Ma) and coincided within dating uncertainties with the jump of the spreading plate boundary from the Norway Basin to the new Kolbeinsey Ridge just north of Iceland. Major geological changes in the Pyrenees and Alpine Tethys region at that time have long been known. In fact, the Palaeogene-Neogene boundary, a time of global change in planktonic biogeography, is placed at 23.0 Ma, in the upper part of C6C. Why the ATJ developed where it did and not elsewhere along the MAR suggests the lithosphere and subjacent mantle had already created a region of plate weakness. The subsequent development of the AP, largely via Mid-Atlantic Ridge spreading, produced a thick crust and more fertile mantle lithosphere-particularly from ca. 12 to 8 Ma. This mantle lithosphere was and continues to be relatively weak and fertile, favouring transtensional fissuring, formation of central volcanoes, as well as oblique hyperslow spreading along the Terceira Rift—particularly in the last 1.5 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Monem, A. A., Fernandez, L. A., & Boone, G. M. (1975). K-Ar ages for the eastern Azores group (Santa Maria, São Miguel and the Formigas Islands). Lithos, 8, 247–254.

    Article  Google Scholar 

  • Adam, C., Madureira, P., Miranda, J. M., Lourenco, N., Yoshida, M., & Fitzenz, D. (2013). Mantle dynamics and characteristics of the Azores Plateau. Earth and Planetary Science Letters, 362, 258–271.

    Article  Google Scholar 

  • Anderson, D. (2005). Scoring hotspots: The plume and plate paradigms. In G. R. Foulger, J. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes, and paradigms. Geological Society of America Special Paper 388, 31–54.

    Google Scholar 

  • Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12, Q11001.

    Article  Google Scholar 

  • Bastos, L., Osorio, J., Barbeito, A., & Hein, A. (1998). Results from geodetic measurements in the western part of the African-Eurasian plate boundary. Tectonophysics, 294, 261–269.

    Article  Google Scholar 

  • Beier, C., Haase K. M., & Abouchami, W. (2015). Geochemical and geochronological constraints on the evolution of the Azores Plateau. In C. R. Neal, W. Sager, E. Erba, & T. Sano (Eds.), The origin, evolution, and environmental impact of oceanic large igneous provinces. Geological Society of America Special Paper 511, 1–29.

    Google Scholar 

  • Beier, C., Haase, K. M., Abouchami, W., Krienitz, M. S., & Hauff, F. (2008). Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems, 9, Q12013.

    Google Scholar 

  • Beier, C., Haase, K. M., & Turner, S. P. (2012). Conditions of melting beneath the Azores. Lithos, 144–145, 1–11. https://doi.org/10.1016/j.lithos.2012.02.019.

    Article  Google Scholar 

  • Bezzeghoud, M., Adam, C., Buform, E., Borgos, J. F., & Caldeira, B. (2014). Seismicity along the Azores-Gibraltar region and global plate kinematics. Journal of Seismology, 18, 205–220.

    Article  Google Scholar 

  • Borges, J. F., Bezzeghoud, M., Buforn, E., Pro, C., & Fritas, A. (2007). The 1980, 1997 and 1998 Azores earthquakes and some seismo-tectonic implications. Tectonophysics, 435, 37–54.

    Article  Google Scholar 

  • Buforn, E., Udias, A., & Colombas, M. A. (1988). Seismicity source mechanisms and tectonics of the Azores-Gibraltar plate boundary. Tectonophysics, 152, 89–118.

    Article  Google Scholar 

  • Calvert, A. T., Moore, R. B., McGeehin, J. P., & Rodrigues da Silva, A. M. (2006). Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal. Journal of Volcanology and Geothermal Research, 156, 103–115.

    Article  Google Scholar 

  • Campan, A., Royer J.-D., Gente P., Olivet J.-L., & Mueller, R. D. (1993). Evolution of the Azores-Gibraltar plate boundary for the last 36 Ma. Eos [Transactions of the American Geophysical Union], 74, p. 586.

    Google Scholar 

  • Cannat, M., Briais, A., Deplus, C., Escartin, J., Georgen, J., Lin, J., et al. (1999). Mid-Atlantic Ridge-Azores hotspot interaction: Along-axis migration of a hotspot-derived event of enhanced magmatism, 10 to 4 Ma ago. Earth and Planetary Science Letters, 173, 395–406.

    Article  Google Scholar 

  • Carminati, E., & Doglioni, C. (2010). North Atlantic geoid high, volcanism and glaciations, Geophysical Research Letters, L3302.

    Google Scholar 

  • Carmo, R., Madeira, J., Ferreira, T., Queiros, G., & Hipolito, A. (2015). Chapter 6: Volcano-tectonic structures of São Miguel Island, Azores, Geological Society, London, Memoirs, 44, 65–86.

    Google Scholar 

  • Casalbore, D., Romagnoli, C., Pimentel, A., Quartau, R., Casas, D., Ercilla, G., et al. (2015). Volcanic, tectonic and mass-wasting processes offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping. Bulletin of Volcanology, 77, 24.

    Article  Google Scholar 

  • Catalao, J., Miranda, J. M., & Lourenco, N. (2006). Deformation associated with the Faial (Capelhinhos) 1957-1958 eruption: Inferences from 1937-1997 geodetic measurements. Journal of Volcanology and Geothermal Research, 155, 151–163.

    Article  Google Scholar 

  • Corti, G. (2008). Control of rift obliquity on the evolution and segmentation of the main Ethiopian Rift. Nature Geoscience, 1(4), 258–262.

    Article  Google Scholar 

  • Costa, A. C. G., Marques, F. O., Hildenbrand, A., Sibrant, A. L. R., & Catita, C. M. S. (2014). Large-scale catastrophic flank collapses in a steep volcanic ridge: The Pico-Faial Ridge, Azores Triple Junction. Journal of Volcanology and Geothermal Research, 272, 111–125.

    Article  Google Scholar 

  • Courtillot, V., Davaille, A., Besse, J., & Stock, J. M. (2003). Three types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205, 295–308.

    Article  Google Scholar 

  • Dalrymple, G. B. (1991). The age of the earth (474p). Stanford, CA: Stanford University Press.

    Google Scholar 

  • Davaille, A., Stutzmann, E., Silveira, G., Besse, J., & Courtillot, V. (2005). Convective patterns under the Indo-Atlantic. Earth and Planetary Science Letters, 239, 233–252.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 81, 1–80.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478.

    Article  Google Scholar 

  • Dias, N. A., Matias, L., Lourenco, N., Madeira, J., Carrilho, F., & Gaspar, J. L. (2007). Crustal seismic velocity structure near Faial and Pico Islands (AZORES), from local earthquake tomography. Tectonophysics, 445, 301–317.

    Article  Google Scholar 

  • Dietz, R. S. (1961). Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 854–857.

    Article  Google Scholar 

  • Dosso, L., Bougault, H., Langmuir, C., Bollinger, C., Bonnier, O., & Etoubleau, J. (1999). The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31°-41° N). Earth and Planetary Science Letters, 170, 269–286.

    Article  Google Scholar 

  • Earnes, F. E. (1970). Some thoughts on the Neogene-Palaeogene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 8, 37–48.

    Article  Google Scholar 

  • Elderfield, H., Ferratti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., et al. (2012). Ocean temperature and ice volume through the Mid-Pleistocene climate transition. Science, 337, 704–709.

    Article  Google Scholar 

  • Escartin, J., Cannat, M., Pouliquen, G., Rabain, A., & Lin, J. (2001). Crustal thickness of V-shaped ridges south of the Azores: Interactions of the Mid-Atlantic Ridge (36°-39° N) with the Azores hot spot. Journal of Geophysical Research, 106, 21719–21755.

    Article  Google Scholar 

  • Ewing, M., & Heezen, B. (1956). Mid-Atlantic seismic belt (Abstract). Transactions of the American Geophysical Union, 37, 343.

    Article  Google Scholar 

  • Fernandes, R. M. S., Bastos, L., Miranda, J. M., Lourenco, N., Ambrosius, B. A. C., Noomen, R., et al. (2006). Defining plate boundaries in the Azores region. Journal of Volcanology and Geothermal Research, 156, 1–9.

    Article  Google Scholar 

  • Forjaz, V. H., Franca, Z. T. M., Tavares, J. M., Almeida, I. M., & Rodrigues, J. A. (2010). Dos Vulcoes dos Acores (From the Azores Volcanoes) (2nd ed., 167p), Ponta Delgada: Publicor.

    Google Scholar 

  • Gaspar, J. L., Queiros, G., Ferreira, T., Amaral, P., Viveiros, F., Marques, R., Silva, C., & Wallenstein, N. (2011). Geological hazards and monitoring at the Azores (Portugal). Earthzine (13p), posted 12 April 2011.

    Google Scholar 

  • Gaspar, J. L., Queiros, G., Ferreira, T., Medeiros, A. R., Goulart, C., & Madeiros, J. (2015). Chapter 4: Earthquakes and volcanic eruptions in the Azores region: Geodynamic implications from major historical events and instrumental seismicity. Geological Society of London, Memoir, 44, 33–49.

    Article  Google Scholar 

  • Gente, P., Dyment, J., Maia, M., & Goslin, J. (2003). Interactions between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: Emplacement and rifting of the hot spot-derived plateaus. Geochemistry, Geophysics and Geosystems, 4(10), 8514.

    Article  Google Scholar 

  • Georgen, J. E., & Sankar, R. D. (2010). Effects of ridge geometry on mantle dynamics in an oceanic triple junction region: Implications for the Azores Plateau. Earth and Planetary Science Letters, 298, 23–34.

    Article  Google Scholar 

  • Glenn, M. F. (1970). Introducing an operational multi-beam array sonar. International Hydrographic Review, 47, 35–40.

    Google Scholar 

  • Goslin, J., & Party, T. S. (1999). Extent of Azores plume influence on the Mid-Atlantic Ridge north of the hotspot. Geology, 27, 991–994.

    Article  Google Scholar 

  • Grevemeyer, I. (1999). Isostatic geoid anomalies over mid-plate swells in the Central North Atlantic. Journal of Geodynamics, 28(1), 41–50.

    Article  Google Scholar 

  • Grimison, N. I., & Chen, W. P. (1986). The Azores-Gibraltar plate boundary: Focal mechanisms, depths of earthquakes and their tectonic implications. Journal of Geophysical Research, 91, 2029–2047.

    Article  Google Scholar 

  • Grimison, N. I., & Chen, W. P. (1988). Source mechanisms for four recent earthquakes along the Azores-Gibraltar plate boundary. Geophysical Journal International, 92, 391–401.

    Google Scholar 

  • Gripp, A. E., & Gordon, R. G. (2002). Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150, 321–361.

    Article  Google Scholar 

  • Gutenberg, B., & Richter C. F. (1941). Seismicity of the Earth. Geological Society of America Special Paper 34, 125p.

    Google Scholar 

  • Heezen, B. C., Tharp, M., & Ewing, M. (1959). The floors of the oceans, I, the North Atlantic. Geological Society of America Special Paper 65, 122p.

    Google Scholar 

  • Hess, H. H. (1959). Nature of the great oceanic ridges. International Oceanographic Congress (Abstract) (pp. 33–34).

    Google Scholar 

  • Hey, R. N. (1977). A new class of pseudo-faults and their bearing on plate tectonics: A propagating rift model. Earth and Planetary Science Letters, 37, 321–325.

    Article  Google Scholar 

  • Hildenbrand, A., Madureira, P., Marques, F. O., Cruz, I., Henry, B., & Silva, P. (2008). Multistage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores Triple Junction. Earth and Planetary Science Letters, 273, 289–298.

    Article  Google Scholar 

  • Hildenbrand, A. P., Weis, D., Madureira, P., & Marques, F. O. (2014). Recent plate re-organization at the Azores Triple Junction: Evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira Volcanic Islands. Lithos, 210–211, 27–39.

    Article  Google Scholar 

  • Hipolito, A., Madeira, J., Carmo, R., & Gaspar, J. L. (2013). Neotectonics of Graciosa Island (Azores): A contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting. Annals of Geophysics, 56.

    Google Scholar 

  • Hirn, A., Haessler, A., Hoang Trong, P., Wittlinger, G., & Mendes Victor, L. A. (1980). Aftershock sequence of the January 1st, 1980, earthquake and present-day tectonics in the Azores. Geophysical Research Letters, 7(501), 504.

    Google Scholar 

  • Holmes, A. (1929). Radioactivity and earth movements. Geological Society of Glasgow Transactions, 18, 559–606.

    Article  Google Scholar 

  • Isacks, B. J., Oliver, J., & Sykes, L. R. (1968). Seismology and the new global tectonics. Journal of Geophysical Research, 73, 5855–5899.

    Article  Google Scholar 

  • Johnson, G. J., Wijbrans, J. R., Constable, C. G., Gee, J., Staudigel, H., Tauxe, L., et al. (1998). 40Ar/39Ar ages and paleomagnetism of São Miguel lavas, Azores. Earth and Planetary Science Letters, 160, 637–649.

    Article  Google Scholar 

  • Kennett, J. P. (1978). The development of planktonic biogeography during the Cenozoic. Marine Micropaleontology, 3, 301–345.

    Article  Google Scholar 

  • Kidd, R., & Ramsay, A. T. S. (1987). The Geology and formation of the King’s Trough Complex in the light of Deep Sea Drilling Project Site 608. In W. F. Ruddiman, R. B. Kidd, & E. Thomas (Eds.), Initial Reports of the Deep Sea Drilling Reports, Leg 94, Part 2, Washington, U.S. Printing Office, pp. 1245–1261.

    Google Scholar 

  • Klitgord, K. D., & Schouten, H. (1986). Plate kinematics of the central Atlantic. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 351–378).

    Google Scholar 

  • Knauss, J. (1986). The juridical ocean basin. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geologic Society of America (pp. 677–687).

    Google Scholar 

  • Krause, D. C., & Watkins, N. D. (1970). North Atlantic crustal genesis in the vicinity of the Azores. Geophysical Journal of the Royal Astronomical Society, 19, 261–283.

    Article  Google Scholar 

  • Larrea, P., Wijbrans, P. R., Gale, C., Ubide, T., Lago, M., Franza, Z., et al. (2014). 40Ar/39Ar constraints on the temporal evolution of Graciosa Island, Azores (Portugal). Bulletin of Volcanology, 76, 796.

    Article  Google Scholar 

  • Laughton, A. S., & Whitmarsh, R. B. (1974). The Azores-Gibraltar plate boundary. In L. Kristjannson (Ed.), Geodynamics of Iceland and the North Atlantic Area (pp. 63–81). Dordrecht: D. Reidel Publishing Co.

    Chapter  Google Scholar 

  • LePichon, X. (1968). Sea-floor spreading and continental drift. Journal of Geophysical Research, 73, 3661–3697.

    Article  Google Scholar 

  • Louden, K. E., Tucholke, B. E., & Oakey, G. N. (2004). Regional anomalies of sediment thickness, basement depth, and isostatic crustal thickness in the North Atlantic Ocean. Earth and Planetary Science Letters, 224, 193–211.

    Article  Google Scholar 

  • Lourenco, N., Miranda, J. M., Luis, J. F., Ribeiro, A., Mendes Victor, L. A., Madeira, J., et al. (1998). Morpho-tectonic analysis of the Azores volcanic plateau from a new bathymetric compilation of the area. Marine Geophysical Researches, 20(3), 141–156.

    Article  Google Scholar 

  • Luis, J. F., & Miranda, J. M. (2008). Reevaluation of magnetic chrons in the North Atlantic between 35°N and 47°N: Implications for the formation of the Azores Triple Junction and associated plateau. Journal of Geophysical Research, 113, B10105 (12p).

    Google Scholar 

  • Luis, J. F., Miranda, J. M., Galdeano, A., & Patriat, P. (1998). Constraints on the structure of the Azores spreading center from gravity data. Marine Geophysical Researches, 20, 157–170.

    Article  Google Scholar 

  • Luis, J. F., Miranda, J. M., Patriat, P., Galdeano, A., Rossignol, J. C., & Mendes Victor, L. A. (1994). Azores triple junction evolution in the last 10 Ma from a new aeromagnetic survey. Earth and Planetary Science Letters, 125, 439–459.

    Article  Google Scholar 

  • Madeira, J., Brum da Silveira, A., Hipolito, A., & Carmo, R. (2015). Chapter 3: Active tectonics in the central and eastern Azores islands along the Eurasia-Nubia plate boundary: A review. Geological Society, London, Memoirs, 44, 15–32.

    Article  Google Scholar 

  • Madureira, P., Mata, J., Mattielli, N., Queiroz, G., & Silva, P. (2011). Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos, 126, 402–418.

    Article  Google Scholar 

  • Madureira, P., Moreira, M., Mata, J., Nunes, J. C., Gautheron, C., Lourenco, N., et al. (2014). Helium isotope systematics in the vicinity of the Azores Triple Junction: Constraints on the Azores geodynamics. Chemical Geology, 372, 62–71.

    Article  Google Scholar 

  • Magde, L. S., & Sparks, D. W. (1997). Three-dimensional mantle upwelling, melt generation, and melt migration beneath segmented slow spreading ridges. Journal of Geophysical Research, 102(B9), 20571–20583.

    Article  Google Scholar 

  • Marques, F. O., Catalao, J. C., DeMets, C., Costa, A. C. G., & Hildenbrand, A. (2013). GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction. Earth and Planetary Science Letters, 381, 177–187.

    Article  Google Scholar 

  • Marques, F. O., Catalao, J. C., DeMets, C., Costa, A. C. G., & Hildenbrand, A. (2014). Corrigendium to “GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction”. Earth and Planetary Science Letters, 387, 1–3.

    Article  Google Scholar 

  • Matias, L., Dias, N. A., Morais, L., Vales, D., Carrilho, F., Madeira, J., et al. (2007). The 9th of July 1998 Faial Island (Azores, North Atlantic) seismic sequence. Journal of Seismology, 11, 275–298.

    Article  Google Scholar 

  • Maury, M. F. (1855). The physical geography of the Sea, Harper and Brothers, New York, 287p.

    Google Scholar 

  • McKenzie, D. F. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109–185.

    Article  Google Scholar 

  • McKenzie, D. F., & Morgan, W. J. (1969). Evolution of triple junctions. Nature, 224, 125–133.

    Article  Google Scholar 

  • Menard, H. W. (1965). Sea floor relief and mantle convection. Physics and Chemistry of the Earth, 6, 315–364.

    Article  Google Scholar 

  • Menard, H. W., & Atwater, T. (1968). Changes in the direction of sea floor spreading. Nature, 219, 463–467.

    Article  Google Scholar 

  • Mendes, V. B., Madeira, J., Brum da Silveira, A., Trota, A., Elosegui, P., & Pagarete, J. (2013). Present-day deformation in São Jorge Island, Azores, from episodic GPS Measurements (2001-2011). Advances in Space Research, 51, 1581–1592.

    Article  Google Scholar 

  • Merkouriev, S., & DeMets, C. (2008). A high-resolution model for Eurasia-North America plate kinematics since 20 Ma. Geophysical Journal International, 173, 1064–1083.

    Article  Google Scholar 

  • Merkouriev, S., & DeMets, C. (2014a). High-resolution estimates of Nubia-North America plate motion: 20 Ma to present. Geophysical Journal International, 196, 1281–1298.

    Article  Google Scholar 

  • Merkouriev, S., & DeMets, C. (2014b). High-resolution Neogene reconstructions of Eurasia-North America Plate motion. Geophysical Journal International, 198, 366–384.

    Article  Google Scholar 

  • Metrich, N., Zanon, V., Creon, L., Hildenbrand, A., Moreira, M., & Marques, F. O. (2014). Is the “Azores Hotspot” a Wetspot? Insights from the Geochemistry of Fluid and Melt Inclusions in Olivine of Pico Basalts. Journal of Petrology, 55, 377–393.

    Article  Google Scholar 

  • Minster, J. B., & Jordan, T. H. (1978). Present day plate motions. Journal of Geophysical Research, 83(B11), 5331–5354.

    Article  Google Scholar 

  • Miranda, J. M., Freire Luis, J., Abreu, A., Mendes Victor, L. A., Galdeano, A., & Rossignol, J. C. (1991). Tectonic framework of the Azores Triple Junction. Geophysical Research Letters, 18, 1421–1424.

    Article  Google Scholar 

  • Miranda, J. M., & Luis, J. F. (2013). Changes in the Mid-Atlantic Ridge spreading velocity during the last 20 Ma (unpublished manuscript).

    Google Scholar 

  • Miranda, J. M., Luis, J. F., Lourenco, N., & Fernandes, R. M. S. (2015). Chapter 2: The structure of the Azores Triple Junction: Implications for São Miguel Island. Geological Society of London, Memoirs, 5–13.

    Google Scholar 

  • Miranda, J. M., Luis, J. F., Lourenco, N., & Goslin, J. (2014). Distributed deformation close to the Azores Triple “Point”. Marine Geology, 355, 27–35.

    Article  Google Scholar 

  • Miranda, J. M., Mendes Victor, L. A., Simoes, J., Luis, J., Matias, L., Shimamura, H., et al. (1998). Tectonic setting of the Azores Plateau deduced from a OBS survey. Marine Geophysical Researches, 20(3), 171–182.

    Article  Google Scholar 

  • Miranda, J. M., Navarro, A., Catalao, J., & Fernandes, R. M. S. (2012). Surface displacement field at Terceira island deduced from repeated GPS measurements. Journal of Volcanology and Geothermal Research, 217–218, 1–7.

    Article  Google Scholar 

  • Morgan, W. J. (1968). Rises, trenches, great faults and crustal blocks. Journal of Geophysical Research, 73, 1959–1982.

    Article  Google Scholar 

  • Morgan, W. J. (1972). Deep mantle convection plumes and plate motions. Bulletin of the American Association of Petroleum Geologists, 56, 203–312.

    Google Scholar 

  • Morgan, W. J. (1978). Darwin, Rodriguez, Amsterdam…a second type of hotspot island. Journal of Geophysical Research, 83, 5355–5360.

    Article  Google Scholar 

  • Morley, L. W., & Larochelle, A. (1964). Paleomagnetism as a means to dating geologic events. Royal Society of Canada, Special Publication, 8, 512–521.

    Google Scholar 

  • Navarro, A., Lourenco, N., Chorowicz, J., Miranda, J. M., & Catalao, J. (2009). Analysis of geometry of volcanoes and faults in Terceira Island (Azores): Evidence for reactivation tectonics at the EUR/AFR plate boundary in the Azores Triple Junction. Tectonophysics, 465, 98–113.

    Article  Google Scholar 

  • Neves, M. C., Miranda, J. M., & Luis, J. F. (2013). The role of lithospheric processes on the development of linear volcanic ridges in the Azores. Tectonophysics, 608, 376–388.

    Article  Google Scholar 

  • Phillips, J. D., & Fleming H. F. (1978). Multi-beam sonar study of the Mid-Atlantic Ridge rift valley, 36°-37° N, Map and Chart Series MC-19, Geological Society of America.

    Google Scholar 

  • Phillips, J. D., Fleming, H. S., Feden, R. H., King, W. E., & Perry, R. K. (1975). Aeromagnetic study of the Mid-Atlantic Ridge near the Oceanographer Fracture Zone. Geological Society of America Bulletin, 86, 1348–1357.

    Article  Google Scholar 

  • Phipps Morgan, J., & Chen, Y. (1993). Dependence of ridge-axis morphology on magma supply and spreading rate. Nature, 364, 706–708.

    Article  Google Scholar 

  • Pitman, W. C., III, & Talwani, M. (1972). Seafloor spreading in the North Atlantic. Geological Society of America Bulletin, 83, 619–646.

    Article  Google Scholar 

  • Rabinowitz, P. D., & Jung, W.-Y. (1986). Gravity anomalies in the Western Atlantic Ocean. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 205–214).

    Google Scholar 

  • Roest, W. R., & Srivastava, S. P. (1991). Kinematics of the plate boundary between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology, 19, 613–616.

    Article  Google Scholar 

  • Runcorn, S. K. (1956). Palaeomagnetism, polar wandering, and continental drift. Geologie en Mijnbow, 18, 253–256.

    Google Scholar 

  • Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi-resolution topography synthesis, Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008gc002332.

  • Saemundson, K. (1986). Chapter 5: Subaerial volcanism in the Western North Atlantic, In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 69–86).

    Google Scholar 

  • Sager, W. W. (2005). What built the Shatsky Rise, a mantle plume or ridge tectonics? In G. R. Foulger, G. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes, and paradigms, Geological Society of America Special Paper 388, 721–733.

    Google Scholar 

  • Santos, R. S., Tempera, P., Menezes, G., Porteiro, F., & Morato, T. (2010). Spotlight 12: Sedlo Seamount. Oceanography, 23, 202–203.

    Article  Google Scholar 

  • Schilling, J. G. (1976). Azores mantle blob: Rare earth evidence. Earth and Planetary Science Letters, 25, 103–115.

    Article  Google Scholar 

  • Schilling, J. G. (1986). Geochemical and isotopic variation along the Mid-Atlantic Ridge axis from 79° N to 0° N. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M. The Western North Atlantic Region, Geological Society of America (pp. 137–156).

    Google Scholar 

  • Schouten, H., Klitgord, K. D., & Whitehead, J. A. (1985). Segmentation of mid-ocean ridges. Nature, 317(6034), 225–229.

    Article  Google Scholar 

  • Sclater, J. G., Anderson, R. N., & Bell, M. L. (1971). The elevation of ridges and the evolution of the central eastern Pacific. Journal of Geophysical Research, 76, 7888–7915.

    Article  Google Scholar 

  • Searle, R. C. (1980). Tectonic pattern of the Azores spreading center and triple junction. Earth and Planetary Science Letters, 51, 415–434.

    Article  Google Scholar 

  • Sibrant, A. L. R., Hildenbrand, A., Marques, F. O., & Costa, A. C. G. (2015). Volcano-tectonic evolution of the Santa Maria Island (Azores): Implications for paleostress evolution at the western Eurasia-Nubia plate boundary. Journal of Volcanology and Geothermal Research, 291, 49–62.

    Article  Google Scholar 

  • Sibrant, A. L. R., Marques, F. O., & Hildenbrand, A. (2014). Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores. Journal of Volcanology and Geothermal Research, 284, 32–45.

    Article  Google Scholar 

  • Sibrant, A. L. R., Marques, F. O., Hildenbrand, A., Boulesteix, T., Costa, A. C. G., & Catalao, J. (2016). Deformation in a hyperslow oceanic rift: Insights from the tectonics of the São Miguel Island (Terceira Rift, Azores). Tectonics, 35, 425–446.

    Article  Google Scholar 

  • Silveira, G., Stutzmann, E., Davaille, A., Montagner, J.-P., Mendes-Victor, L., & Sebai, A. (2006). Azores hotspot signature in the upper mantle. Journal of Volcanology and Geothermal Research, 156, 23–34.

    Article  Google Scholar 

  • Simkin, T., Tilling, R. I., Vogt, P. R., Kirby, S. H., Kimberly, P., & Stewart, D. B. (2006). This dynamic planet: World map of volcanoes, earthquakes, impact craters, and plate tectonics. U.S. Geological Survey Geologic Investigations Series Map I-2800.

    Google Scholar 

  • Sloan, H., & Patriat, P. (1992). Kinematics of the North American-African plate boundary between 28° N and 29° N during the last 10 Ma: Evolution of the axial geometry and spreading rate and direction. Earth and Planetary Science Letters, 113, 323–341.

    Article  Google Scholar 

  • Smith, A. (1971). Alpine deformation and the oceanic areas of the Tethys, Mediterranean, and Atlantic. Geological Society of America Bulletin, 82, 2039–2070.

    Article  Google Scholar 

  • Smith, W., & Sandwell, D. (1997). Global seafloor bathymetry from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.

    Article  Google Scholar 

  • Srivastava, S. P., & Tapscott, C. R. (1986). Plate kinematics of the North Atlantic. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geologic Society of America (pp. 379–404).

    Google Scholar 

  • Srivastava, S. P., Roest, W. R., Kovacs, L. C., & Oakey, G. (1990). Motion of Iberia since the Late Jurassic: Results from detailed aeromagnetic measurements in the Newfoundland Basin. Tectonophysics, 84, 229–260.

    Google Scholar 

  • Stocks, T., & Wuest, G. (1935). Die Tiefenverhaeltnisse des offenen Atlantischen Ozeans, Deutsche Atlantische Expedition METEOR 1925-1927, Wissenschaftliche Ergebisse, 3, Teil 1,1. Lieferung, 31p.

    Google Scholar 

  • Tams, E. (1927). Die seismischen Verhaeltnisse des offenen Atlantischen Ozeans. Gerlands Beitraege zur Geophysik, 18, 319–353.

    Google Scholar 

  • Tempera, F., Hipolito, A., Madeira, J., Vieira, S., Campos, A. S., & Mitchell, N. C. (2013). Condor Seamount (Azores, NE Atlantic): A morpho-tectonic interpretation. Deep-Sea Research II, 98, 7–23.

    Article  Google Scholar 

  • Tucholke, B. E., & Vogt, P. R. (Eds.). (1979). Initial Reports of the Deep Sea Drilling Project, v. 43, U.S. Government Printing Office, Washington, D.C., 1115p.

    Google Scholar 

  • Udias, A., Lopez Arroyo, A., & Mezcua, J. (1976). Seismotectonics of the Azores-Alborean región. Tectonophysics, 31, 259–289.

    Article  Google Scholar 

  • Vine, F. J., & Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199, 947–949.

    Article  Google Scholar 

  • Vink, G. E., Morgan, W. J., & Zhen, W. I. (1984). Preferential rifting of continents: A source of displaced terranes. Journal of Geophysical Research, 89, 10072–10076.

    Article  Google Scholar 

  • Vogt, P. R. (1974). Volcano height and plate thickness. Earth and Planetary Science Letters, 23, 337–348.

    Article  Google Scholar 

  • Vogt, P. R. (1976). Plumes, subaxial pipe flow, and topography along the Mid-Oceanic Ridge. Earth and Planetary Science Letters, 29, 309–325.

    Article  Google Scholar 

  • Vogt, P. R. (1979). Global magmatic episodes: New evidence and implications for the steady-state mid-oceanic ridge. Geology, 7, 93–98.

    Article  Google Scholar 

  • Vogt, P. R. (1986a). The present plate boundary configuration. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 189–204).

    Google Scholar 

  • Vogt, P. R. (1986b). Magnetic anomalies and crustal magnetization. In P. R. Vogt & B. E. Tucholke (Eds.), The geology of North America, v. M, The Western North Atlantic Region, Geological Society of America (pp. 229–256).

    Google Scholar 

  • Vogt, P. R. (1986c). Plate kinematics during the last 20 m.y. and the problem of ‘present’ motions. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M., The Western North Atlantic Region, Geological Society of America (pp. 405–425).

    Google Scholar 

  • Vogt, P. R., & Tucholke B. E. (1986). Imaging the ocean floor: History and state of the art. In P. R. Vogt & B. E. Tucholke (Eds.), The Geology of North America, v. M., The Western North Atlantic Region, Geological Society of America (pp. 19–44).

    Google Scholar 

  • Vogt, P. R., & Jung, W.-Y. (2004). The Terceira rift as hyper-slow, hotspot-dominated oblique spreading axis: A comparison with other slow-spreading plate boundaries. Earth and Planetary Science Letters, 218, 77–90.

    Article  Google Scholar 

  • Vogt, P. R., & Jung W.-Y. (2005). Paired basement ridges: Spreading axis migration across mantle heterogeneities? In G. R. Foulger, G. H. Natland, D. C. Presnall, & D. L. Anderson (Eds.), Plates, plumes, and paradigms, Geological Society of America Special Paper 388, 555–579.

    Google Scholar 

  • Vogt, P. R., Michael P. J., White S. M., & Macdonald K. C. (2008). Tall axial edifices (TAEs) on MOR spreading boundaries-characteristics and causes (Abs.), International Geologic Congress.

    Google Scholar 

  • Vogt, P. R., Kovacs, L. C., Bernero, L. C., & Srivastava, S. P. (1982). Asymmetric geophysical signatures in the Greenland-Norwegian and Southern Labrador Seas and the Eurasia Basin. Tectonophysics, 89, 95–160.

    Article  Google Scholar 

  • Vogt, P. R., & Ostenso, N. A. (1966). Magnetic survey over the Mid-Atlantic Ridge between 42° and 46° N. Journal of Geophysical Research, 71(18), 4389–4412.

    Article  Google Scholar 

  • Walker, J. D., Geissman J. W., Browning J. W., & Babcock L. E. (2012). Compilers, Geologic Time Scale v. 4.0, Geologic Society of America.

    Google Scholar 

  • Wegener, A. (1966). Die Enstehung der Kontinente und Ozeane, Vieweg und Sohn, Braunschweig, 1929 [The origin of continents and oceans, J. Biram, Trans.]. New York: Dover Publications (246p).

    Google Scholar 

  • Weiss, B. J., Huebscher, C., & Luedmann, T. (2015a). The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores). Tectonophysics, 654, 75–95.

    Article  Google Scholar 

  • Weiss, B. J., Huebscher, C., Luedmann, T., & Serra, N. (2016). Submarine sedimentation processes in the southeastern Terceira Rift/São Miguel region (Azores). Marine Geology, 374, 42–58.

    Article  Google Scholar 

  • Weiss, B. J., Huebscher, C., Wolf, D., & Luedmann, T. (2015b). Submarine explosive volcanism in the southeastern Terceira Rift/São Miguel region (Azores). Journal of Volcanology and Geothermal Research, 303, 79–91.

    Article  Google Scholar 

  • Wilson, J. T. (1963). A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41, 863–870.

    Article  Google Scholar 

  • Wilson, J. T. (1965). A new class of faults and their bearing on continental drift. Nature, 207, 343–347.

    Article  Google Scholar 

  • Yang, T., Shen, T., van der Lee, S., Solomon, S. C., & Hung, S.-H. (2006). Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth and Planetary Science Letters, 250, 11–26.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Robert I. Tilling and J. Miguel Miranda for thoughtful reviews (2014), and editors Ulrich Kueppers and Christoph Beier for inviting us to contribute this chapter. The chapter was updated in November-December, 2016. Joaquim Luis generously allowed us to reproduce his high-resolution hillshade topography of the triple junction region (Fig. 3d).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogt, P.R., Jung, WY. (2018). The “Azores Geosyndrome” and Plate Tectonics: Research History, Synthesis, and Unsolved Puzzles. In: Kueppers, U., Beier, C. (eds) Volcanoes of the Azores. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32226-6_3

Download citation

Publish with us

Policies and ethics