Skip to main content

Melting and Mantle Sources in the Azores

  • Chapter
  • First Online:
Book cover Volcanoes of the Azores

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

The Azores archipelago is geochemically distinct amongst the oceanic intraplate volcanoes in that it has trace element and radiogenic Sr–Nd–Pb–Hf isotope signatures that cover much of the global variation observed in Ocean Island Basalts. Thus, it is the prime example of an intraplate melting anomaly preserving the compositional heterogeneity of the Earth’s mantle. Here, we review the trace element and radiogenic isotope geochemistry of the Azores islands and few submarine samples analysed and published over the past decades and summarise these findings and conclusions. The volcanoes of all islands erupted lavas of the alkaline series and their compositions broadly range from basalts to trachytes (see also Chapter “Petrology of the Azores Islands” by Larrea et al.). Temperatures and pressures of melting imply that melting in the Azores occurs as a result of both slightly increased temperatures in the mantle (~35 °C) and addition of volatile elements into the mantle source. Basalts from the island of São Miguel show a stronger enrichment in highly incompatible elements like K and the Light Rare Earth Elements than the other islands further to the west. The older and easternmost island Santa Maria has lavas that are more silica-undersaturated than the rocks occurring on the younger islands. Each of the eastern islands shows a different and distinct radiogenic isotope composition and much of this variability can be explained by variably enriched recycled components of different age in their source regions. Amongst the global array, the lavas from eastern São Miguel are uniquely enriched in that they display radiogenic 206Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr isotope ratios best explained by a distinct source in the mantle. The implication of the preservation of such unique, enriched sources in the mantle may indicate that stirring processes in the Azores mantle are not efficiently homogenising heterogeneities over the timescales of recycling of 0.1–1 Ga and possibly even up to 2.5 Ga. One possible explanation is the low buoyancy flux of the Azores mantle when compared to other intraplate settings. The preservation of these source signatures in the lavas on the easternmost Azores islands are the result of smaller degrees of partial melting due to a thicker lithosphere. This likely prevents a homogenisation during magma ascent compared to the western islands, preferentially sampling deep, low degree partial melts from the more fertile mantle sources. The geochemical signatures of the two islands west of the Mid-Atlantic Ridge (Corvo and Flores) imply a source enrichment and degrees of partial melting similar to those east of the ridge. Melting underneath the western islands is the result of a source that must be related to the Azores melting anomaly but has been modified by shallow level processes such as assimilation of oceanic crustal material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Monem, A. A., Fernandez, L. A., & Boone, G. M. (1975). K-Ar-Ages from the eastern Azores group (Santa Maria, Sao Miguel and the Formigas islands). Lithos, 8, 247–254.

    Article  Google Scholar 

  • Agostinho, J. (1936). The volcanoes of the Azores Islands. Bulletin of Volcanology, 8, 123–138.

    Article  Google Scholar 

  • Allegre, C. J., Hamelin, B., Provost, A., & Dupre, B. (1987). Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth and Planetary Science Letters, 81(4), 319–337.

    Article  Google Scholar 

  • Asimow, P. D., Dixon, J. E., & Langmuir, C. H. (2004). A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5(1), Q01E16.

    Google Scholar 

  • Asimow, P. D., Hirschmann, M. M., & Stolper, E. M. (2001). Calculation of Peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean Ridge Basalts. Journal of Petrology, 42(5), 963–998.

    Article  Google Scholar 

  • Béguelin, P., Bizimis, M., Beier, C., & Turner, S. (2017). Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochimica et Cosmochimica Acta, 218, 132–152. https://doi.org/10.1016/j.gca.2017.09.015 .

  • Beier, C., Haase, K. M., & Abouchami, W. (2015). Geochemical and geochronological constraints on the evolution of the Azores Plateau. Geological Society of America Special Papers.

    Google Scholar 

  • Beier, C., Haase, K. M., Abouchami, W., Krienitz, M.-S., & Hauff, F. (2008). Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems, 9(12), Q12013.

    Article  Google Scholar 

  • Beier, C., Haase, K. M., & Hansteen, T. H. (2006). Magma evolution of the Sete Cidades volcano, São Miguel, Azores. Journal of Petrology, 47(7), 1375–1411.

    Article  Google Scholar 

  • Beier, C., Haase, K. M., & Turner, S. P. (2012). Conditions of melting beneath the Azores. Lithos, 144–145, 1–11.

    Article  Google Scholar 

  • Beier, C., et al. (2013). Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contributions to Mineralogy and Petrology, 165(5), 823–841.

    Article  Google Scholar 

  • Beier, C., Stracke, A., & Haase, K. M. (2007). The peculiar geochemical signatures of São Miguel lavas: Metasomatised or recycled mantle sources? Earth and Planetary Science Letters, 259(1–2), 186–199.

    Article  Google Scholar 

  • Beier, C., Turner, S. P., Plank, T., & White, W. (2010). A preliminary assessment of the symmetry of source composition and melting dynamics across the Azores plume. Geochemistry, Geophysics, Geosystems, 11(1), Q02004.

    Google Scholar 

  • Berthois, L. (1953). Contribution to the lithological study of the Azores archipelago. Comincacoes Serv Geology Portugal, 24, 29–198.

    Google Scholar 

  • Blundy, J. D., Robinson, J. A. C., & Wood, B. J. (1998). Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth and Planetary Science Letters, 160(3–4), 493–504.

    Article  Google Scholar 

  • Bolfan-Casanova, N. (2003). Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophysical Research Letters, 30(17), 1905.

    Article  Google Scholar 

  • Bonatti, E. (1990). Not so hot “hot spots” in the oceanic mantle. Science, 250(4977), 107–111.

    Article  Google Scholar 

  • Bougault, H., & Treuil, M. (1980). Mid-Atlantic Ridge: Zero age geochemical variations between Azores and 22 °N. Nature, 286, 209–212

    Google Scholar 

  • Bourdon, B., Langmuir, C. H., & Zindler, A. (1996). Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30’ and 40°30’N: the U-Th disequilibrium evidence. Earth and Planetary Science Letters, 142, 175–189.

    Article  Google Scholar 

  • Bourdon, B., Turner, S. P., & Ribe, N. M. (2005). Partial melting and upwelling rates beneath the Azores from U-series isotope perspective. Earth and Planetary Science Letters, 239(1–2), 42–56.

    Article  Google Scholar 

  • Brandl, P. A., et al. (2012). Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 289–299(3–4), 41–56.

    Article  Google Scholar 

  • Cannat, M., et al. (1999). Mid-Atlantic ridge—Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth and Planetary Science Letters, 173, 257–269.

    Article  Google Scholar 

  • Cardigos, F., et al. (2005). Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores). Chemical Geology, 224, 153–168.

    Article  Google Scholar 

  • Charlou, J. L., et al. (2000). Compared geochemical signatures and the evolution of Menez Gwen (37°50’N) and Lucky Strike (37°17’N) hydrothermal fluids, south of the Azores triple junction on the Mid-Atlantic Ridge. Chemical Geology, 171(1–2), 49–75.

    Article  Google Scholar 

  • Cooper, K. M., Eiler, J. M., Asimow, P. D., & Langmuir, C. H. (2004). Oxygen isotope evidence for the origin of enriched mantle beneath the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 220(3–4), 297–316.

    Article  Google Scholar 

  • Davies, G. R., Norry, M. J., Gerlach, D. C., & Cliff, R. A. (1989). A combined chemical and Pb–Sr–Nd isotope study of the Azores and Cap Verde hot-spots: The geodynamic implications. In: A.D. Saunders & M.J. Norry (Eds.), Magmatism in the oceanic basins (pp. 231–255). Geological Society Special Publications.

    Google Scholar 

  • Dias, N. A., et al. (2007). Crustal seismic velocity structure near Faial and Pico Islands (Azores), from local earthquake tomography. Tectonophysics, 445(3–4), 301–317.

    Article  Google Scholar 

  • Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., & Spiegelman, M. (2004). Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 226(3–4), 347–366.

    Article  Google Scholar 

  • Dosso, L., et al. (1999). The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31-41°N). Earth and Planetary Science Letters, 170, 269–286.

    Article  Google Scholar 

  • Dupré, B., & Allègre, C. J. (1983). Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303(5913), 142–146.

    Article  Google Scholar 

  • Dupré, B., Lambret, B., & Allègre, C. J. (1982). Isotopic variations within a single oceanic island: The Terceira case. Nature, 299, 620–622.

    Article  Google Scholar 

  • Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G., & Forjaz, V. (2007). The origin of enriched mantle beneath Sao Miguel, Azores. Geochimica et Cosmochimica Acta, 71(1), 219–240.

    Article  Google Scholar 

  • Escartín, J., Cannat, M., Pouliquen, G., & Rabain, A. (2001). Crustal thickness of V-shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°–39 °N) and the Azores hot spot. Journal of Geophysical Research, 106(10), 21719–21735.

    Google Scholar 

  • Esenwein, P. (1929). Zur Petrographie der Azoren. Zeitschrift für Vulkanologie, 3(12), 128–227.

    Google Scholar 

  • Farnetani, C. G., & Samuel, H. (2005). Beyond the thermal plume paradigm. Geophysical Research Letters, 32(7), L07311.

    Article  Google Scholar 

  • Féraud, G., Kaneoka, I., & Allègre, C. J. (1980). K/Ar ages and stress pattern in the Azores: Geodynamic implications. Earth and Planetary Science Letters, 46, 275–286.

    Article  Google Scholar 

  • Foulger, G. R., Natland, J. H., Presnall, D. C., & Anderson, D. L. (2005). Plates, plumes and paradigms, 388. Geological Society of America.

    Google Scholar 

  • França, Z. T. (2006). Geochemistry of alkaline basalts of Corvo Island (Azores, Portugal): Preliminary data. Geogaceta(40), 87–90.

    Google Scholar 

  • França, Z. T. M., et al. (2006). Petrology, geochemistry and Sr–Nd–Pb isotopes of the volcanic rocks from Pico Island-Azores (Portugal). Journal of Volcanology and Geothermal Research, 156(1–2), 71–89.

    Article  Google Scholar 

  • Gale, A., Escrig, S., Gier, E. J., Langmuir, C. H., & Goldstein, S. L. (2011). Enriched basalts at segment centers: The Lucky Strike (37°17′N) and Menez Gwen (37°50′N) segments of the Mid-Atlantic ridge. Geochemistry, Geophysics, Geosystems, 12(6), Q06016.

    Article  Google Scholar 

  • Gast, P. W. (1968). Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta, 32(10), 1057–1086.

    Article  Google Scholar 

  • Genske, F. S., et al. (2013). Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine. Geology, 41(4), 491.

    Article  Google Scholar 

  • Genske, F. S., et al. (2014). Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chemical Geology, 373, 27–36.

    Article  Google Scholar 

  • Genske, F. S., Turner, S. P., Beier, C., & Schaefer, B. F. (2012). The petrology and geochemistry of Lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 53(8), 1673–1708.

    Article  Google Scholar 

  • Gente, P., Dyment, J., Maia, M., & Goslin, J. (2003). Interaction between the Mid-Atlantic ridge and the Azores hotspot during the last 85 Myr: Emplacement and rifting of the hot spot-derived plateaus. Geochemistry, Geophysics, Geosystems, 4(10), Q8514.

    Article  Google Scholar 

  • Georgen, J. E. (2008). Mantle flow and melting beneath oceanic ridge-ridge-ridge triple junctions. Earth and Planetary Science Letters, 270(3–4), 231–240.

    Article  Google Scholar 

  • Girod, M., & Lefevre, C. (1972). A propos des “andesites” des Acores. Contributions to Mineralogy and Petrology, 35(2), 159–167.

    Article  Google Scholar 

  • Goslin, J., et al. (1999). Extent of Azores plume influence on the Mid-Atlantic ridge north of the hotspot. Geology, 27(11), 991–994.

    Article  Google Scholar 

  • Haase, K. M., & Beier, C. (2003). Tectonic control of ocean island basalt sources on Sao Miguel, Azores? Geophysical Research Letters, 30(16), 1856.

    Article  Google Scholar 

  • Halliday, A. N., et al. (1995). Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth and Planetary Science Letters, 133, 379–395.

    Article  Google Scholar 

  • Hamelin, C., et al. (2013). Atypically depleted upper mantle component revealed by Hf isotopes at Lucky Strike segment. Chemical Geology, 341, 128–139.

    Article  Google Scholar 

  • Hanan, B. B., & Graham, D. W. (1996). Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272(5264), 991–995.

    Article  Google Scholar 

  • Hart, S. R. (1988). Heterogeneous mantle domains—Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3), 273–296.

    Article  Google Scholar 

  • Hart, S. R., & Staudigel, H. (1989). Isotopic characterization and identification of recycled components, crust/ mantle recycling at convergence zones (pp. 15–28). Dordrecht-Boston: D Reidel Publishing Company (International).

    Google Scholar 

  • Hart, S. R., & Zindler, A. (1989). Constraints on the nature and development of chemical heterogeneities in the mantle, mantle convection; plate tectonics and global dynamics (pp. 261–387). New York, NY: Gordon & Breach Science Publishers.

    Google Scholar 

  • Hawkesworth, C. J., Norry, M. J., Roddick, J. C., & Vollmer, R. (1979). 143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle. Nature, 280, 28–31.

    Article  Google Scholar 

  • Hildenbrand, A., et al. (2008). Multi-stage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores triple junction. Earth and Planetary Science Letters, 273(3–4), 289–298.

    Article  Google Scholar 

  • Hildenbrand, A., et al. (2012). Reconstructing the architectural evolution of volcanic islands from combined K/Ar, morphologic, tectonic, and magnetic data: The Faial Island example (Azores). Journal of Volcanology and Geothermal Research, 241, 39–48.

    Article  Google Scholar 

  • Hirschmann, M. M. (2006). Water, melting, and the deep earth H2O cycle. Annual Review of Earth and Planetary Sciences, 34(1), 629–653.

    Article  Google Scholar 

  • Hirschmann, M. M., Aubaud, C., & Withers, A. C. (2005). Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth and Planetary Science Letters, 236(1–2), 167–181.

    Article  Google Scholar 

  • Hirschmann, M. M., Kogiso, T., Baker, M. B., & Stolper, E. M. (2003). Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6), 481–484.

    Article  Google Scholar 

  • Hirschmann, M. M., & Stolper, E. M. (1996). A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contributions to Mineralogy and Petrology, 124(2), 185–208.

    Article  Google Scholar 

  • Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229.

    Article  Google Scholar 

  • Hofmann, A. W. (2003). Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In R. W. Carlson (Ed.), Treatise on geochemistry (pp. 61–101). Amsterdam: Elsevier.

    Google Scholar 

  • Jaques, A. L., & Green, D. H. (1979). Determination of liquid compositions in high-pressure melting of peridotite. American Mineralogist, 64(11–12), 1312–1321.

    Google Scholar 

  • Kelley, K. A., Plank, T., Ludden, J., & Staudigel, H. (2005). Subduction cycling of U, Th, and Pb. Earth and Planetary Science Letters, 234, 369–383.

    Article  Google Scholar 

  • Kingsley, R. H., & Schilling, J.-G. (1995). Carbon in Mid-Atlantic Ridge basalt glasses from 28°N to 63°N: Evidence for a carbon-enriched Azores mantle plume. Earth and Planetary Science Letters, 129, 31–53.

    Article  Google Scholar 

  • Kumagai, I., Davaille, A., Kurita, K., & Stutzmann, E. (2008). Mantle plumes: Thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophysical Research Letters, 35(16), 5.

    Article  Google Scholar 

  • Larrea, P., et al. (2013). Magmatic processes and the role of Antecrysts in the genesis of Corvo Island (Azores Archipelago, Portugal). Journal of Petrology, 54(4), 769–793.

    Article  Google Scholar 

  • Larrea, P., et al. (2014). Magmatic evolution of Graciosa (Azores, Portugal). Journal of Petrology, 55(11), 2125–2154.

    Article  Google Scholar 

  • Laubier, M., Gale, A., & Langmuir, C. H. (2012). Melting and crustal processes at the FAMOUS segment (Mid-Atlantic Ridge): New insights from Olivine-hosted Melt Inclusions from Multiple Samples. Journal of Petrology, 53(4), 665–698.

    Article  Google Scholar 

  • Le Maitre, R. (1989). A classification of igneous rocks and glossary of terms, recommendations of the International union of geological sciences, subcommission on the systematics of igneous rocks. Oxford, London: Blackwell.

    Google Scholar 

  • LeBas, M. J., LeMaitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic-rocks based on the total alkali silica diagram. Journal of Petrology, 27(3), 745–750.

    Article  Google Scholar 

  • Litasov, K., et al. (2003). Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth and Planetary Science Letters, 211(1–2), 189–203.

    Article  Google Scholar 

  • Luis, J. F., et al. (1994). The Azores triple junction evolution since 10 Ma from aeromagnetic survey of the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 125, 439–459.

    Article  Google Scholar 

  • Lyubetskaya, T., & Korenaga, J. (2007). Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research, 112, B03211.

    Google Scholar 

  • Madureira, P., Mata, J., Mattielli, N., Queiroz, G., & Silva, P. (2011). Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos, 126, 402–418.

    Article  Google Scholar 

  • Madureira, P., Moreira, M., Mata, J., & Allègre, C.-J. (2005). Primitive neon isotopes in Terceira Island (Azores archipelago). Earth and Planetary Science Letters, 233, 429–440.

    Article  Google Scholar 

  • Matias, L., et al. (2007). The 9th of July 1998 Faial Island (Azores, North Atlantic) seismic sequence. Journal of Seismology, 11(3), 275–298.

    Article  Google Scholar 

  • McKenzie, D. A. N., & O’Nions, R. K. (1995). The source regions of ocean island basalts. Journal of Petrology, 36(1), 133–159.

    Article  Google Scholar 

  • Metrich, N., et al. (2014). Is the ‘Azores Hotspot’ a Wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of pico basalts. Journal of Petrology, 55(2), 377–393.

    Article  Google Scholar 

  • Millet, M.-A., Doucelance, R., Baker, J. A., & Schiano, P. (2009). Reconsidering the origins of isotopic variations in Ocean Island Basalts: Insights from fine-scale study of São Jorge Island, Azores archipelago. Chemical Geology, 265(3–4), 289–302.

    Article  Google Scholar 

  • Mitchell, N. C., Beier, C., Rosin, P., Quartau, R., & Tempera, F. (2008). Lava penetrating water: Submarine lava flows around the coasts of Pico Island, Azores. Geochemistry, Geophysics, Geosystems, 9. https://doi.org/10.1029/2007gc001725.

  • Mitchell, N. C., Stretch, R., Oppenheimer, C., Kay, D., & Beier, C. (2012). Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores. Bulletin of Volcanology, 74, 2289–2301.

    Article  Google Scholar 

  • Moreira, M., Doucelance, R., Kurz, M. D., Dupre, B., & Allegre, C. J. (1999). Helium and lead isotope geochemistry of the Azores Archipelago. Earth and Planetary Science Letters, 169(1–2), 189–205.

    Article  Google Scholar 

  • Morgan, W. J. (1971). Convection plumes in the lower mantle. Nature, 230, 42–43.

    Article  Google Scholar 

  • Murakami, M., Hirose, K., Yurimoto, H., & Nakashima, S. (2002). Water in Earth’s lower mantle. Science, 295, 1885–1887.

    Article  Google Scholar 

  • Neal, C. R., Mahoney, J. J., Kroenke, L. W., Duncan, R. A., & Petterson, M. G. (1997). The Ontong Java Plateau, large igneous provinces; continental, oceanic, and planetary flood volcanism (pp. 183–216). Washington, DC: American Geophysical Union.

    Google Scholar 

  • Niu, Y., O’Hara, M. J. (2003). Origin of ocean island basalts; a new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 108(B4). https://doi.org/10.1029/2002jb002048.

  • Nunes, J. C., Forjaz, V. H., Alves, J. L., & Bernardes, A. C. (2003). Caracterização vulcanológica do Banco D. João de Castro (Açores): novos dados. Ciências da Terra (UNL), V(CD-ROM): D55–D58.

    Google Scholar 

  • Oversby, V. M. (1971). Lead in oceanic islands; Faial, Azores and Trindade. Earth and Planetary Science Letters, 11(5), 401–406.

    Article  Google Scholar 

  • Pertermann, M., & Hirschmann, M. M. (2003). Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of a pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research, 108(B2), 2125.

    Article  Google Scholar 

  • Pilidou, S., Priestley, K., Debayle, E., & Gudmundsson, Ó. (2005). Rayleigh wave tomography in the North Atlantic: High resolution images of the Iceland, Azores and Eifel mantle plumes. Lithos, 79, 453–474.

    Article  Google Scholar 

  • Pilidou, S., Priestley, K., Gudmundsson, O., & Debayle, E. (2004). Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography; the Iceland and Azores plumes. Geophysical Journal International, 159(3), 1057–1076.

    Article  Google Scholar 

  • Provost, A., & Allegre, C. J. (1979). Process identification and search for optimal differentiation parameters from major element data; general presentation with emphasis on the fractional crystallization process. Geochimica et Cosmochimica Acta, 43(4), 487–502.

    Article  Google Scholar 

  • Prytulak, J., & Elliott, T. (2007). TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters, 263(3–4), 388–403.

    Article  Google Scholar 

  • Prytulak, J., & Elliott, T. (2009). Determining melt productivity of mantle sources from 238U-230Th and 235U-231Pa disequilibria; an example from Pico Island, Azores. Geochimica et Cosmochimica Acta, 73(7), 2103–2122.

    Article  Google Scholar 

  • Prytulak, J., et al. (2014). Melting versus contamination effects on 238U-230Th-226Ra and 235U-231Pa disequilibria in lavas from Sao Miguel, Azores. Chemical Geology, 381, 94–109.

    Article  Google Scholar 

  • Ramalho, R. S., Helffrich, G., Madeira, J., Cosca, M., Thomas, C., Quartau, R., et al. (2016). Emergence and evolution of Santa Maria Island (Azores)—The conundrum of uplifted islands revisited. Geological Society of America Bulletin. https://doi.org/10.1130/b31538.1.

    Google Scholar 

  • Robinson, J. A. C., & Wood, B. J. (1998). The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters, 164(1–2), 277–284.

    Article  Google Scholar 

  • Salters, V. J. M., & White, W. M. (1998). Hf isotope constraints on mantle evolution. Chemical Geology, 145(3–4), 447–460.

    Article  Google Scholar 

  • Santos, R. S., et al. (2001). Remote sensing at D. João de Castro bank: Tools for biology and conservation studies. In: 5th Underwater Science Symposium, Southampton (United Kingdom).

    Google Scholar 

  • Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N., & Hawkesworth, C. (2002). Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature, 420, 304–307.

    Article  Google Scholar 

  • Schilling, J.-G. (1975). Azores mantle blob: Rare-earth evidence. Earth and Planetary Science Letters, 25, 103–115.

    Article  Google Scholar 

  • Schilling, J.-G., Bergeron, M. B., & Evans, R. (1980). Halogens in the mantle beneath the North Atlantic. Philosophical Transactions of the Royal Society of London, A297, 147–178.

    Article  Google Scholar 

  • Schilling, J. G. (1978). F, Cl, Br in MAR glasses and Azores basalts. Eos Transactions American Geophysical Union, 59(4), 409.

    Google Scholar 

  • Schilling, J.-G., et al. (1983). Petrologic and geochemical variations along the Mid-Atlantic ridge from 29°N to 73°N. American Journal of Science, 283, 510–586.

    Article  Google Scholar 

  • Schmincke, H. U., & Staudigel, H. (1976). Pillow lavas on central and eastern Atlantic islands (La Palma, Gran Canrai, Porto Santo, Santa Maria); preliminary report. Bulletin de la Societe Geologique de France, 18(4), 871–883.

    Article  Google Scholar 

  • Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., & Nikogosian, I. K. (2005). An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–597.

    Article  Google Scholar 

  • Stosch, H.-G. (1982). Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochimica et Cosmochimica Acta, 46(5), 793–811.

    Article  Google Scholar 

  • Stracke, A., Bizimis, M., & Salters, V. J. M. (2003). Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 4(3), Q8003.

    Article  Google Scholar 

  • Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6, Q05007.

    Article  Google Scholar 

  • Stracke, A., Salters, V. J. M., & Sims, K. W. W. (1999). Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics. Geochemistry, Geophysics, Geosystems, 1, 1–15.

    Google Scholar 

  • Sun, S.-S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the ocean basins (pp. 313–345). London: Geological Society of London Special Publications.

    Google Scholar 

  • Turner, S., Hawkesworth, C., Rogers, N., & King, P. (1997). U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chemical Geology, 139(1–4), 145–164.

    Article  Google Scholar 

  • Turner, S., Tonarini, S., Bindeman, I., Leeman, W. P., & Schaefer, B. F. (2007). Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature, 447(7145), 702–705.

    Article  Google Scholar 

  • Vogt, P. R., & Jung, W. Y. (2004). The Terceira Rift as hyper-slow, hotspot-dominated oblique spreading axis: A comparison with other slow-spreading plate boundaries. Earth and Planetary Science Letters, 218, 77–90.

    Article  Google Scholar 

  • Walter, M. J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1), 29–60.

    Article  Google Scholar 

  • Weaver, B. L. (1991). Trace element evidence for the origin of ocean-island basalts. Geology, 19(2), 123–126.

    Article  Google Scholar 

  • Wessel, P., & Kroenke, L. W. (2009). Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth and Planetary Science Letters, 284(3–4), 467–472.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72, 441.

    Article  Google Scholar 

  • White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Contributions to Mineralogy and Petrology, 62, 129–139.

    Article  Google Scholar 

  • White, R., McKenzie, D., & O’Nions, R. (1992). Oceanic crustal thickness from seismic measurements and rare-earth element inversions. Journal of Geophysical Research, 97(B13), 19683–19715.

    Article  Google Scholar 

  • White, W. M., & Schilling, J. G. (1976). K, Rb, Sr, and Ba, geochemistry of Azores islands and Mid-Atlantic Ridge basalts. Eos Transactions American Geophysical Union, 57(4), 343.

    Google Scholar 

  • White, W. M., Schilling, J. G., & Hart, S. R. (1975). Sr-isotope geochemistry of the Azores and the Mid-Atlantic Ridge; 29°N to 60°N. Eos Transactions American Geophysical Union, 56(6), 471.

    Google Scholar 

  • White, W. M., Schilling, J. G., & Hart, S. R. (1976). Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic. Nature, 263, 659–662.

    Article  Google Scholar 

  • White, W. M., Tapia, M. D. M., & Schilling, J.-G. (1979). The petrology and geochemistry of the Azores Islands. Contributions to Mineralogy and Petrology, 69, 201–213.

    Article  Google Scholar 

  • Widom, E., Carlson, R. W., Gill, J. B., & Schmincke, H. U. (1997). Th–Sr–Nd–Pb isotope and trace element evidence for the origin of the Sao Miguel, Azores, enriched mantle source. Chemical Geology, 140(1–2), 49–68.

    Article  Google Scholar 

  • Widom, E., & Farquhar, J. (2003). Oxygen isotope signatures in olivines from Sao Miguel (Azores) basalts: Implications for crustal and mantle processes. Chemical Geology, 193, 237–255.

    Article  Google Scholar 

  • Widom, E., & Shirey, S. B. (1996). Os isotope systematics in the Azores: Implications for mantle plume sources. Earth and Planetary Science Letters, 142, 451–465.

    Article  Google Scholar 

  • Workman, R. K., et al. (2004). Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4), Q04008.

    Article  Google Scholar 

  • Yang, T., Shen, Y., van der Lee, S., Solomon, S. C., & Hung, S.-H. (2006). Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth and Planetary Science Letters, 250(1–2), 11–26.

    Article  Google Scholar 

  • Zanon, V., & Frezzotti, M. L. (2013). Magma storage and ascent conditions beneath Pico and Faial islands (Azores archipelago): A study on fluid inclusions. Geochemistry, Geophysics, Geosystems, 14(9), 3494–3514.

    Article  Google Scholar 

  • Zanon, V., Kueppers, U., Pacheco, J. M., & Cruz, I. (2013). Volcanism from fissure zones and the Caldeira central volcano of Faial Island, Azores archipelago: Geochemical processes in multiple feeding systems. Geological Magazine, 1–20.

    Google Scholar 

  • Zindler, A., & Hart, S. (1986). Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the extremely constructive and helpful review(s) by Sebastian Wiesmaier and the review by Vittorio Zanon. We acknowledge the help and contributions of various colleagues over the years including linguistic and scientific corrections by Wafa Abouchami, Steve Galer, Dieter Garbe-Schönberg, Felix S. Genske, Thor Hansteen, Folkmar Hauff, Munir Humayun, Michael Joachimski, Niels W. R. Jöns, Stephan Klemme, Mark Krienitz, Stefan Krumm, João Mata, Neil Mitchell, Marcel Regelous, Tracy Rushmer, Bruce Schaefer, Andreas Stracke, Jürgen Titschack, Simon P. Turner, Bill White, and Elisabeth Widom. Christoph Beier and Karsten Haase also acknowledge funding by the Deutsche Forschungsgemeinschaft during various projects in the Azores (BE4459/1-1, BE4459/4-1, HA2568/6–1, HA2568/9–2). Christoph Beier acknowledges the Alexander von Humboldt-Foundation for funding during his stay in Australia and Simon P. Turner for his helpful, entertaining and friendly help. P. A. Brandl and C. Beier acknowledge the inspiring and productive atmosphere at Eurobodalla and Singapore Airlines with sufficient seatspace to be able to revise this manuscript. This manuscript was finalised in the Boilerhouse Café of the RHUL campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beier, C., Haase, K.M., Brandl, P.A. (2018). Melting and Mantle Sources in the Azores. In: Kueppers, U., Beier, C. (eds) Volcanoes of the Azores. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32226-6_11

Download citation

Publish with us

Policies and ethics