Skip to main content

Photoinduced and Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

The concentration of hydrogen peroxide (H2O2) in natural waters has been determined for the first time in 1925 by Harvey (Harvey 1925), who studied inshore and offshore water from the English Channel. 

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akane S, Makino S, Hashimoto N, Yatsuzuka Y, Kawai Yu, Takeda K, Sakugawa H (2004) Hydrogen peroxide in the sea water of Hiroshima Bay Japan. Oceanogr Jpn 13:185–196 (In Japanese)

    CAS  Google Scholar 

  • Amador JA, Alexander M, Zika RG (1989) Sequential photochemical and microbial degradation of organic molecules bound to humic acid. App Environ Microb 55:2843–2849

    CAS  Google Scholar 

  • Amouroux D, Donard OFX (1995) Hydrogen peroxide determination in estuarine and marine waters by flow injection with fluorescence detection. Oceanol Acta 18:353–361

    CAS  Google Scholar 

  • Anesio AM, Granéli W, Aiken GR, Kieber DJ, Mopper K (2005) Effect of humic substance photodegradation on bacterial growth and respiration in lake water. Appl Environ Microb 71:6267–6275

    CAS  Google Scholar 

  • Angel DL, Fiedler U, Eden N, Kress N, Adelung D, Herut B (1999) Catalase activity in macro- and micro-organisms as an indicator of biotic stress in coastal waters of the eastern Mediterranean Sea. Helgoland Mar Res 53:209–218

    Google Scholar 

  • Arakaki T, Fujimura H, Hamdun AM, Okada K, Kondo H, Oomori T, Tanahara A, Taira H (2005) Simultaneous measurement of hydrogen peroxide and Fe species (Fe(II) and Fe(tot) in Okinawa island seawater: impacts of red soil pollution. J Oceanogr 61:561–568

    CAS  Google Scholar 

  • Assel M, Laenen R, Laubereau A (1998) Ultrafast electron trapping in an aqueous NaCl-solution. Chem Phys Lett 289:267–274

    CAS  Google Scholar 

  • Avery GB Jr, Cooper WJ, Kieber RJ, Willey JD (2005) Hydrogen peroxide at the Bermuda Atlantic time series station: temporal variability of seawater hydrogen peroxide. Mar Chem 97:236–244

    CAS  Google Scholar 

  • Baden DG, Corbett MD (1980) Bromoperoxidases from penicillus capitatus lamourouxii, and rhipocepholus. Biochem J 187:205–211

    CAS  Google Scholar 

  • Baxter RM, Carey JH (1983) Evidence for superoxide ion in natural waters. Nature 306:575–576

    CAS  Google Scholar 

  • Bazanov MI, Berezin BD, Berezin DB et al. (1999) Uspekhi khimii porfirinov (Progress in the Chemistry of Porphyrins), St. Petersburg: NII khimii SPbGU

    Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    CAS  Google Scholar 

  • Boehm AB, Grant SB, Kim JH, Mowbray SL, McGee CD, Clark CD, Foley DM, Wellman DE (2002) Decadal and shorter period variability of surf-zone water quality at Huntington Beach California. Environ Sci Technol 36:3885

    CAS  Google Scholar 

  • Boehm AB, Yamahara KM, Love DC, Peterson BM, McNeill K, Nelson KL (2009) Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ Sci Technol. doi:10.1021/es9015124

    Google Scholar 

  • Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta 1757:535–542

    CAS  Google Scholar 

  • Brezonik PL, Fulkerson-Brekken J (1998) Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ Sci Technol 32:3004–3010

    CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    CAS  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Phil Trans R Soc B 363:2731–2743. doi:10.1098/rstb.2008.0041

    CAS  Google Scholar 

  • Cabelli DE (1997) The reactions of HO2/O2 radicals in aqueous solution. In: Alfassi ZB (ed) Peroxyl radicals. Wiley, New York, pp 407–437

    Google Scholar 

  • Cabelli V, Dufour AP, Levin MA, McCabe LJ, Harberman PW (1979) Relationship of microbial indicators to health effects at marine bathing beaches. Am J Public Health 69:690–695

    CAS  Google Scholar 

  • Calvert JG, Lazrus A, Kok GL, Heikes BG, Walega JG, Lind J, Cantrell CA (1985) Chemical mechanisms of acid generation in the troposphere. Nature 317:27–35

    CAS  Google Scholar 

  • Carrillo P, Medina-Sánchezv JM, Villar-Argaiz M (2002) The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnol Oceanogr 47:1294–1306

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  Google Scholar 

  • Clark CD, Bruyn WJ, Jakubowski SD, Grant SB (2008) Hydrogen peroxide production in marine bathing waters: implications for fecal indicator bacteria mortality. Mar Pollut Bull 56:397–401

    CAS  Google Scholar 

  • Clark CD, De Bruyn WJ, Jones JG (2009) Photochemical production of hydrogen peroxide in size-fractionated Southern California coastal waters. Chemosphere 76:141–146

    CAS  Google Scholar 

  • Clark CD, De Bruyn WJ, Hirsch CM, Jakubowski SD (2010a) Hydrogen peroxide measurements in recreational marine bathing waters in Southern California USA. Water Res 44:2203–2210

    CAS  Google Scholar 

  • Clark CD, De Bruyn WJ, Hirsch CM, Aiona P (2010b) Diel cycles of hydrogen peroxide in marine bathing waters in Southern California, USA: In situ surf zone measurements. Mar Pollut Bull 60:2284–2288

    CAS  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in sea water using excitation-emission matrix spectroscopy. Mar Chem 52:325–336

    Google Scholar 

  • Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107:402–418

    CAS  Google Scholar 

  • Collen J, Del Rio MJ, Garcia-Reina G, Pedersen M (1995) Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta 196:225–230

    CAS  Google Scholar 

  • Cooper WJ, Lean DRS (1989) Hydrogen peroxide concentration in a Northern lake: photochemical formation and diel variability. Environ Sci Technol 23:1425–1428

    CAS  Google Scholar 

  • Cooper WJ, Lean DRS (1992) Hydrogen peroxide dynamics in marine and fresh water systems. Encyclopedia of Earth system science. Academic Press Inc 2:527–535

    Google Scholar 

  • Cooper WJ, Zepp RG (1990) Hydrogen peroxide decay in waters with suspended soils: evidence for biologically mediated processes. Can J Fish Aquat Sci 47:888–893

    CAS  Google Scholar 

  • Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220:711–712

    CAS  Google Scholar 

  • Cooper WJ, Saltzman ES, Zika RG (1987) The contribution of rainwater to variability in surface ocean hydrogen peroxide. J Geophys Res 92:2970–2980

    CAS  Google Scholar 

  • Cooper WJ, Zika RG, Petasne RG, Plane JMC (1988) Photochemical formation of H2O2 in natural waters exposed to sunlight. Environ Sci Technol 22:1156–1160

    CAS  Google Scholar 

  • Cooper WJ, Zika RG, Petasne RG, Fisher AM (1989a) Aquatic humic substances: influence on fate and treatment of pollutants. In: Suffet IH, MacCarthy P (Ed), Advances in chemistry series 219. Am Chem Soc, Washington

    Google Scholar 

  • Cooper WJ, Lean DRS, Carey J (1989b) Spatial and temporal patterns of hydrogen peroxide in lake waters. Can J Fish Aquat Sci 46:1227–1231

    CAS  Google Scholar 

  • Cooper WJ, Shao C, Lean DRS, Gordon AS, Scully FE Jr (1994) Factors affecting the distribution of H2O2 in surface waters. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, Adv Chem Ser 237. Am Chem Soc, Washington, pp 391–422

    Google Scholar 

  • Cooper WJ, Moegling JK, Kieber RJ, Kiddle JJ (2000) A chemiluminescence method for the analysis of H2O2 in natural waters. Mar Chem 70:191–200

    CAS  Google Scholar 

  • Corin N, Backlund P, Kulovaara M (1996) Degradation products formed during UV-irradiation of humic waters. Chemosphere 33:245–255

    CAS  Google Scholar 

  • Croot PL, Laan P, Nishioka J, Strass V, Cisewski B, Boye M, Timmermans KR, Bellerby RG, Goldson L, Nightingale P, Baar HJW (2005) Spatial and temporal variation distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Mar Chem 95:65–88

    CAS  Google Scholar 

  • Crutzen PJ (1992) Ultraviolet on the increase. Nature 356:104–105

    Google Scholar 

  • Dalrymple RM, Carfagno AK, Sharpless CM (2010) Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environ Sci Technol 44:5824–5829

    CAS  Google Scholar 

  • Darakas E (2002) E. Coli kinetics—effect of temperature on the maintenance and respectively the decay phase. Environ Monit Assess 78:101–110

    Google Scholar 

  • Diffey BL (1991) Solar ultraviolet radiation effects on biological systems. Phys Med Biol 36:299–328

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1983) The photochemical generation of hydrogen peroxide in natural waters. Arch Environ Contam Toxicol 12:121–126

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1984) Solar photooxidation of pesticides in diluted hydrogen-peroxide. J Agric Food Chem 32:231–237

    CAS  Google Scholar 

  • Dunlap WC, Susic M (1985) Determination of pteridines and flavins by reverse-phase, high-performance liquid chromatography with fluorimetric detection. Mar Chem 17:185–198

    CAS  Google Scholar 

  • Dykens JA (1984) Enzymic defenses against oxygen toxicity in marine cnidarians containing endosymbiotic algae. Mar Biol Lett 5:291–301

    CAS  Google Scholar 

  • Farjalla VF, Azevedo DA, Esteves FA, Bozelli RL, Roland F, Enrich-Prast A (2006) Influence of hydrological pulse on bacterial growth and DOC uptake in a clear-water Amazonian Lake. Microb Ecol 52:334–344

    Google Scholar 

  • Faust BC, Allen JM (1992) Aqueous-phase photochemical sources of peroxyl radicals and singlet molecular-oxygen in clouds and fog. J Geophys Res-Atmospheres 97(D12):12913-12926

    Google Scholar 

  • Faust BC, Hoigne J (1987) Sensitized photooxidation of phenols by fulvic acid and in natural waters. Environ Sci Technol 21:957–964

    CAS  Google Scholar 

  • Faust BC, Anastasio C, Allen JM, Arakaki T (1993) Aqueous-phase photochemical formation of peroxides in authentic cloud and fog waters. Science 260:73–75

    CAS  Google Scholar 

  • Fenton HJ (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    CAS  Google Scholar 

  • Fischer AM, Kliger DS, Winterle JS, Mill T (1985) Direct observations of phototransients in natural waters. Chemosphere 14:1299–1306

    CAS  Google Scholar 

  • Fischer AM, Winterle JS, Mill T (1987) Direct observations of primary photochemical processes in photolysis mediated by humic substances. In: Zika RG and Cooper RW (Ed) Photochemistry of environmental aquatic systems, ACS Symposium Series 327, Am Chem Soc, pp 141–156

    Google Scholar 

  • Forman HJ, Boveris A (1982) Superoxide radical and hydrogen peroxide in mitochodria. In: Pryor W (Ed), Free radicals in biology, Vol 5, Academic Publishers, pp 65–90

    Google Scholar 

  • Frimer AA, Forman A, Borg DC (1983) H2O2 diffusion through liposomes. Israel J Chem 23:442–445

    CAS  Google Scholar 

  • Fu P, Mostofa KMG, Wu FC, Liu CQ, Li W, Liao H, Wang L, Wang J, Mei Y (2010) Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochem J 44:99–112

    CAS  Google Scholar 

  • Fujioka RS, Hashimoto HH, Siwak EB, Young RHF (1981) Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microb 41:690–696

    CAS  Google Scholar 

  • Fujiwara K, Ushiroda T, Takeda K, Kumamoto Y, Tsubota H (1993) Diurnal and seasonal distribution of hydrogen peroxide in seawater of Seto Inland Sea. Geochem J 27:103–115

    CAS  Google Scholar 

  • Fujiwara K, Takeda K, Kumamoto Y (1995) Generations of carbonyl sulfides and hydrogen peroxide in the Seto Inland Sea-Photochemical reactions progressing in the coastal seawater. In: Sakai H, Nozaki Y (Ed), Biogeochemical Processes and Ocean flux in the Western Pacific, TERRAPUB, Tokyo, pp 101–127

    Google Scholar 

  • Gao H, Zepp RG (1998) Factors influencing photoreactions of dissolved organic matter in a coastal river of the southern United States. Environ Sci Technol 32:2940–2946

    CAS  Google Scholar 

  • Gerringa LJA, Rjkenberg MJA, Timmermans KR, Buma AGJ (2004) The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean. J Sea Res 51:3–10

    CAS  Google Scholar 

  • Glaze WH, Kang JW (1989) Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor. Ind Eng Chem Res 28(11):1573–1580

    CAS  Google Scholar 

  • Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM (2002) Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372

    CAS  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1997) Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 47:382–388

    Google Scholar 

  • Gopinathan C, Damle PS, Hart EJ (1972) Gamma-ray irradiated sodium chloride as a source of hydrated electrons. J Phys Chem 76:3694–3698

    Google Scholar 

  • Gorren AC, Dekker H, Wever R (1986) Kinetic investigations of the reaction of cytochrome C oxidase by hydrogen peroxide. Biochem Biophys Acta 852:81–92

    CAS  Google Scholar 

  • Grivennikova VG, Cecchini G, Vinogradov AD (2008) Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Lett 582:2719–2724

    CAS  Google Scholar 

  • Guilbault GG, Brignac P Jr, Juneau M (1968) New substrate for the fluorometric determination of oxidative enzymes. Anal Chem 40:1256–1263

    CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc Roy Soc Lond, Ser A:332–351

    Google Scholar 

  • Hamanaka J, Tanoue E, Hama T, Handa N (2002) Production and export of particulate fatty acids, carbohydrates and combined amino acids in the euphotic zone. Mar Chem 77:55–69

    CAS  Google Scholar 

  • Harris GP (1979) Photosyntheis, productivity and growth: the physiological ecology of phytoplankton. Arch fur Hydrobiol 16:1–191

    Google Scholar 

  • Harvey HW (1925) Oxidation in seawater. J Mar Biol Assoc UK 13:953–969

    CAS  Google Scholar 

  • Harvey HR, Tuttle JH, Bell JT (1995) Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59:3367–3377

    CAS  Google Scholar 

  • Hayakawa K (2004) Seasonal variations and dynamics of dissolved carbohydrates in Lake Biwa. Org Geochem 35:169–179

    CAS  Google Scholar 

  • Hayase K, Shinozuka N (1995) Vertical distribution of fluorescent organic matter along with AOU and nutrients in the Equatorial pacific. Mar Chem 48:282–290

    Google Scholar 

  • Hayase K, Tsubota H (1985) Sedimentary humic and fulvic acids as fluorescent organic materials. Geochim Cosmochim Acta 49:159–163

    CAS  Google Scholar 

  • Hellpointner E, Gäb S (1989) Detection of methyl, hydroxymethyl and hydroxyethyl hydroperoxides in air and precipitation. Nature 337:631–634

    CAS  Google Scholar 

  • Helz GR, Kieber RJ (1985) Water chlorination: Chem Environ. Impact Health Eff Proc Conf 5th, 1033–1040

    Google Scholar 

  • Herut B, Shoham-Frider E, Kress N, Fiedler U (1998) Hydrogen peroxide production rates in clean and polluted coastal marine waters of the Mediterranean, red and Baltic Seas. Mar Poll Bull 36:994–1003

    CAS  Google Scholar 

  • Hewitt CN, Kok GL (1991) Formation and occurrences of organic hydroperoxides in the troposphere: laboratory and field observations. J Atmos Chem 12:181–194

    CAS  Google Scholar 

  • Ho P (1986) Photooxidation of 2,4 dinitrotoluene in aqueous solution in the presence of H2O2. Environ Sci Technol 20:260–267

    CAS  Google Scholar 

  • Holm-Hansen O, Lubin D, Helbling EW (1993) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR (Ed), Environmental UV photobiology, Plenum, pp 379–425

    Google Scholar 

  • Hong AP, Bahnemann DW, Hoffmann MR (1987) J Phys Chem 91:2109–2117

    CAS  Google Scholar 

  • Inoue K, Matsuur T, Saito I (1982) Photogeneration of superoxide ion and hydrogen peroxide from tryptophan and its photooxidation products: The role of 3a-hydroperoxypyrrolidinoindole. Photochem Photobiol 35:133–139

    CAS  Google Scholar 

  • Jeong J, Yoon J (2005) pH effect on OH radical production in photo/ferrioxalate system. Water Res 39:2893–2900

    CAS  Google Scholar 

  • Johnson KS, Willason SW, Wiesenburg DA, Lohrenz SE, Arnone RA (1989) Hydrogen peroxide in the western Mediterranean Sea: a tracer for vertical advection. Deep-Sea Res 36:241–254

    CAS  Google Scholar 

  • Kelley RL, Reddy CA (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete Chrysosporium. Arch Microbiol 144:248–253

    CAS  Google Scholar 

  • Kieber DJ, Blough NV (1990) Determination of carboncentered radicals in aqueous solution by liquid chromatography with fluorescence detection. Anal Chem 62:2275–2283

    CAS  Google Scholar 

  • Kieber RJ, Heltz GR (1995) Temporal and seasonal variations of hydrogen peroxide levels in estuarine waters. Estuar Coast Shelf Sci 46:645–656

    Google Scholar 

  • Kim K, Portis AR Jr (2004) Oxygen-dependent H2O2 production by Rubisco. FEBS Lett 571:124–128

    CAS  Google Scholar 

  • Kim J, Zobell CE (1974) Occurrence an activities of cell-free enzymes in oceanic environments. In: Colwell RR, Mortia RY (Ed), Effect of the ocean environment on microbial activities, University Park Press, University Park, pp 368–385

    Google Scholar 

  • Kim DH, Takeda K, Sakugawa H, Lee J-S (2003) The photochemical reactions of iron species in rain and snow in Higashi-Hiroshima, Japan. Anal Sci Technol 16:466–474

    Google Scholar 

  • Kobayashi T, Natanani N, Hirakawa T, Suzuki M, Miyake T, Chiwa M, Yuhara T, Hashimoto N, Inoue K, Yamamura K, Agus N, Sinogaya JR, Nakane K, Kume A, Arakaki T, Sakugawa H (2002) Variation in CO2 assimilation rate induced by simulated dew waters with different sources of hydroxyl radical (.OH) on the needle surfaces of Japanese red pine (Pinus densiflora Sieb. et Zucc.). Environ Pollut 118:383–391

    CAS  Google Scholar 

  • Komissarov GG (1994) Photosynthesis: a new look. Sci Russia 5:52–55

    Google Scholar 

  • Komissarov GG (1995) Photosynthesis as a physical process. Chem Phys Reports 14(11):1723–1732

    Google Scholar 

  • Komissarov GG (2003) Photosynthesis: the physical-chemical approach. J Adv Chem Phys 2(1):28–61

    Google Scholar 

  • Kramer JB, Canonica S, Hoigne J, Kaschig J (1996) Degradation of fluorescent whitening agents in sunlit natural waters. Environ Sci Technol 30:2227–2234

    CAS  Google Scholar 

  • Kwan WP, Voelker BM (2002) Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36:1467–1476

    CAS  Google Scholar 

  • Lazrus AL, Kok GL, Gitlin SN, Lind JA, Mclaren SE (1985) Automated fluorometric method for hydrogen peroxide in atmospheric precipitation. Anal Chem 57:917–922

    CAS  Google Scholar 

  • Lazrus AL, Kok GL, Lind JA, Gitlin SN, Heikes BG, Shetter RE (1986) Automated fluorometric method for hydrogen peroxide in air. Anal Chem 58:594–597

    CAS  Google Scholar 

  • Lee JH, Tang IN, Weinstein-Lloyd B, Halper EB (1994) Improved nonenzymatic method for the determination of gas-phase peroxides. Environ Sci Technol 28:1180–1185

    CAS  Google Scholar 

  • Leenheer JA, Croué JP (2003) Characterizing aquatic dissolved organic matter. Environ Sci Technol 37:18–26

    Google Scholar 

  • Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    CAS  Google Scholar 

  • Lehninger AL (1970) Biochemistry. Worth, New york, p 478

    Google Scholar 

  • Liang M-C, Hartman H, Kopp RE, Kirschvink JL, Yung YL (2006) Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis. PNAS 103:18896–18899

    CAS  Google Scholar 

  • Liu J, Steinberg SM, Johnson BJ (2003) A high performance liquid chromatography method for determination of gas-phase hydrogen peroxide in ambient air using Fenton’s chemistry. Chemosphere 52:815–823

    CAS  Google Scholar 

  • Lobanov AV, Kholuiskaya SN, Komissarov GG (2004) Photocatalytic synthesis of formaldehyde from CO2 and H2O2 Doklady. Phys Chem Part I 399:266–268

    Google Scholar 

  • Lobanov AV, Rubtsova NA, Vedeneeva YA, Komissarov GG (2008) Photocatalytic activity of chlorophyll in hydrogen peroxide generation in water. Doklady Chem Part 2(421):190–193

    Google Scholar 

  • Mageli OL, Kolczynski JR (1966) Organic peroxides. Ind Eng Chem 58:25–32

    CAS  Google Scholar 

  • Malcolm RL (1985) Geochemistry of stream fulvic and humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (Ed), Humic substances in soil, sediment, and water: geochemistry. Isolation and Characterization, Wiley, pp 181–209

    Google Scholar 

  • Marañòn E, Cermeño P, Fernández E, Rodrìguez J, Zabala L (2004) Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol Oceanogr 49:1652–1666

    Google Scholar 

  • McCarthy M, Pratum T, Hedges J, Benner R (1997) Chemical composition of dissolved organic nitrogen in the ocean. Nature 390:150–154

    CAS  Google Scholar 

  • Medina-Sánchez Manuel J, Villar-Argaiz M, Carrillo P (2006) Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: a short-term experimental study. Limnol Oceanogr 51:913–924

    Google Scholar 

  • Mill T, Hendry DG, Richardson H (1980) Free-radical oxidants in natural waters. Science 207:886–887

    CAS  Google Scholar 

  • Miller WL, Kester DR (1988) Hydrogen peroxide measurement in seawater by p-hydroxyphenyl acetic acid dimerization. Anal Chem 60:2711–2715

    CAS  Google Scholar 

  • Miller WL, Kester DR (1994) Peroxide variations in the Sargasso Sea. Mar Chem 48:17–29

    CAS  Google Scholar 

  • Miller GW, Morgan CA, Kieber DJ, Whitney King D, Snow JA, Heikes BG, Mopper K, Kiddle JJ (2005) Hydrogen peroxide method intercomparison study in seawater. Mar Chem 97:4–13

    CAS  Google Scholar 

  • Miller C, Willey JD, Kieber R (2008) Changes in rainwater composition in Wilmington, NC during tropical storm Ernesto. Atmos Environ 42:846–855

    CAS  Google Scholar 

  • Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H2O2 in seawater. Geochim Cosmochim Acta 53:1867–1873

    CAS  Google Scholar 

  • Millington KR, Maurdev G (2004) The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool. J Photochem Photobiol A Chem 165:177–185

    CAS  Google Scholar 

  • Mitchell R, Chamberlin C (1975) Factors influencing the survival of enteric microorganisms in the sea: an overview In: Gameson ALH (Ed), Proceedings of the international symposium on discharge of Sewage from Ocean outfalls Pergamon Press, London, pp 237–251

    Google Scholar 

  • Moffett JW, Zafiriou OC (1990) An Investigation of hydrogen peroxide chemistry in surface waters of Vineyard sound with H2 18O2 and 18O2. Limnol Oceanogr 35:1221–1229

    CAS  Google Scholar 

  • Moffett JW, Zafiriou OC (1993) The photochemical decomposition of hydrogen peroxide in surface waters of the eastern Caribbean and Orinoco River. J Geophys Res 98(C2):2307–2313

    Google Scholar 

  • Moffett JW, Zika RG (1983) Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar Chem 13:239–251

    CAS  Google Scholar 

  • Moffett JW, Zika RG (1987a) Photochemistry of a copper complexes in sea water In: Zika RG, Cooper WJ (Ed), Photochemistry of environmental aquatic systems, ACS Sym Ser 327, Am Chem Soc, Washington pp 116–130

    Google Scholar 

  • Moffett JW, Zika RG (1987b) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Technol 21:804–810

    CAS  Google Scholar 

  • Moore CA, Farmer CT, Zika RG (1993) Influence of the Orinoko river on hydrogen peroxide distribution and production in the Eastern Caribean. J Geophys Res 98(C2):2289–2298

    Google Scholar 

  • Mopper K, Zika RG (1987) Natural photosensitizers in sea water: riboflavin and its breakdown products In: Zika RG, Cooper WJ (Ed), Photochemistry of environmental aquatic systems, Am Chem Soc, Washington, pp 174–190

    Google Scholar 

  • Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42(6):1307–1316

    CAS  Google Scholar 

  • Moran MA Jr, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–1264

    CAS  Google Scholar 

  • Mostofa KMG (2005) Dynamics, characteristics and photochemical processes of fluorescent dissolved organic matter and peroxides in river water. Ph D Thesis, September 2005, Hiroshima University, Japan

    Google Scholar 

  • Mostofa KMG, Akane S, Sakugawa H Role of microbial function in controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. (Manuscript in preparation)

    Google Scholar 

  • Mostofa KMG, Sakugawa H (2003) Spatial and temporal variation of hydrogen peroxide in stream and river waters: effect of photo-bio-physio-chemical processes of aquatic matter Abstracts of the 13th Annual VM Goldschmidt Conference, Kurashiki, Japan. Geochim Cosmochim Acta 67(18S), p A309

    Google Scholar 

  • Mostofa KMG, Sakugawa H (2009) Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. Environ Chem 6:524–534

    CAS  Google Scholar 

  • Mostofa KMG, Yoshioka T, Konohira E, Tanoue E, Hayakawa K, Takahashi M (2005a) Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed. Limnology 6:101–115

    CAS  Google Scholar 

  • Mostofa KMG, Honda Y, Sakugawa H (2005b) Dynamics and optical nature of fluorescent dissolved organic matter in river waters in Hiroshima prefecture, Japan. Geochem J 39:257–271

    CAS  Google Scholar 

  • Mostofa KMG, Yoshioka T, Konohira E, Tanoue E (2007a) Dynamics and characteristics of fluorescent dissolved organic matter in the groundwater, river and lake water. Water Air Soil Pollut 184:157–176

    CAS  Google Scholar 

  • Mostofa KMG, Yoshioka T, Konohira E, Tanoue E (2007b) Photodegradation of fluorescent dissolved organic matters in river waters. Geochem J 41:323–331

    CAS  Google Scholar 

  • Mostofa KMG, Wu FC, Yoshioka T, Sakugawa H, Tanoue E (2009a) Dissolved organic matter in the aquatic environments In: Wu FC, Xing B (Ed), Natural organic matter and its significance in the environment, Science Press, Beijing, pp 3–66

    Google Scholar 

  • Mostofa KMG, Liu CQ, Wu FC, Fu PQ, Ying WL, Yuan J (2009b) Overview of key biogeochemical functions in lake ecosystem: impacts of organic matter pollution and global warming. Keynote Speech. In: Proceedings of the 13th World Lake Conference Wuhan, China, 1–5 Nov 2009, pp 59–60

    Google Scholar 

  • Nakanishi I, Fukuzumi S, Konishi T, Ohkubo K, Fujitsuka M, Ito O, Miyata N (2002) DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to γ-Cyclodextrin-Bicapped C60 in an oxygen-saturated aqueous solution. J Phys Chem B 106:2372–2380

    CAS  Google Scholar 

  • Nakatani N, Ueda M, Shindo H, Takeda K, Sakugawa H (2007) Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples. Anal Sci 23:1137–1142

    CAS  Google Scholar 

  • Nathan CF, Cohn ZA (1981) Antitumer effects of hydrogen peroxide in vivo. J Exp Med 154:1539–1553

    CAS  Google Scholar 

  • Nieto-Cid M, Álvarez-Salgado A, Pérez FF (2006) Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr 51:1391–1400

    CAS  Google Scholar 

  • O’Sullivan DW, Neale PJ, Coffin RB, Boyd TJ, Osburn CL (2005) Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters. Mar Chem 97:14–33

    Google Scholar 

  • Obernosterer I, Ruardij P, Herndl GJ (2001) Spatial and diurnal dynamics of dissolved organic matter (DOM) fluorescence and H2O2 and the photochemical oxygen demand of surface water DOM across the subtropical Atlantic Ocean. Limnol Oceanogr 46:632–643

    CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation and modification. Ann Rev Plant Physiol 35:415–442

    CAS  Google Scholar 

  • Olasehinde EF, Makino S, Kondo H, Takeda K, Sakugawa H (2008) Application of Fenton reaction for nanomolar determination of hydrogen peroxide in seawater. Analyt Chim Acta 627:270–276

    CAS  Google Scholar 

  • Osburn CL, O’Sullivan DW, Boyd TJ (2009) Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnol Oceanogr 54:145–159

    Google Scholar 

  • Page SE, Arnold WA, McNeill K (2011) Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions. Environ Sci Technol 45:2818–2825

    CAS  Google Scholar 

  • Palenic B, Morel FMM (1988) Dark production of H2O2 in the Sargasso Sea. Limnol Oceanogr 33:1606–1611

    Google Scholar 

  • Palenic B, Zafiriou OC, Morel FMM (1987) Hydrogen peroxide production by a marine phytoplankton. Limnol Oceanogr 32:1365–1369

    Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrme C oxidase activity and on the cardilipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    CAS  Google Scholar 

  • Parmon VN (1985) in Fotokataliticheskoe preobrazovanie solnechnoi energii, Ch 2 Molekulyarnye sistemy dlya razlozheniya vody (Photocatalytic Sunlight Conversion, part 2: Molecular systems for water decomposition). Nauka, Novosibirsk

    Google Scholar 

  • Penkett SA, Jones BMR, Brice KA, Eggleton AEJ (1979) The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulphur dioxide in cloud and rainwater. Atmos Environ 13:123–137

    CAS  Google Scholar 

  • Perkowski J, Jóźwiak W, Kos L, Stajszczyk P (2006) Applications of Fenton’s reagent in detergent separation in highly concentrated water solutions. Fibres Textile Eastern Europe 14:114–119

    CAS  Google Scholar 

  • Petasne RG, Zika RG (1987) The fate of superoxide in coastal seawater. Nature 325:516–518

    CAS  Google Scholar 

  • Petasne RG, Zika RG (1997) Hydrogen peroxide lifetimes in south Florida coastal and offshore waters. Mar Chem 56:215–225

    CAS  Google Scholar 

  • Peuravuori J, Pihlaja K (1999) Some approaches for modelling of dissolved aquatic organic matter. In: Keskitalo J, Eloranta P (Ed), Limnology of humic waters, Backhuy Publishers, Leiden, pp 11–39

    Google Scholar 

  • Power JF, Sharma DK, Langford CH, Bonneau R, Joussot-Dubein J (1987) Laser flash photolytic studies of a well-characterized soil humic substances. In: Zika RG, Cooper WJ (Ed), Photochemistry of environmental aquatic systems, ACS Symposium Series 327, Am Chem Soc, Washington, pp 17–173

    Google Scholar 

  • Qian J, Mopper K, Kieber DJ (2001) Photochemical production of the hydroxyl radical in Antarctic waters. Deep-Sea Res I 48:741–759

    CAS  Google Scholar 

  • Randall CE, Harvey VL, Manney GL, Orsolini Y, Codrescu M, Sioris C, Brohede S, Haley CS, Gordley LL, Zawdony JM, Russell JM (2005) Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys Res Lett LO5082 doi:101029/2004GL022003

    Google Scholar 

  • Resing J, Tien G, letelier R, Karl DM (1993) Palmer LTER: hydrogen peroxide in the Palmer LTER region: II Water column distribution Antarctic. J US 227–229

    Google Scholar 

  • Rex M, Harris NRP, der Gathen P, Lehman R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Conner F, Dier H, Dorokhov V, Fast H, Gil M, Kyro E, Litynska Z, Mikkelsen IB, Molyneux MG, Nakane H, Notholt J, Rummukainen M, Viatte P, Wenger J (1997) Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature 389:835–838

    CAS  Google Scholar 

  • Richard C, Canonica S (2005) Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. Hdb Env Chem 2(Part M):299–323

    Google Scholar 

  • Richard LE, Peake BM, Rusak SA, Cooper WJ, Burritt DJ (2007) Production and decomposition dynamics of hydrogen peroxide in freshwater. Environ Chem 4:49–54. doi:101071/EN06068

    CAS  Google Scholar 

  • Rosenstock B, Simon M (2001) Sources and sinks of dissolved free amino acids and protein in a large and deep mesotrophic lake. Limnol Oaceanogr 50:90–101

    Google Scholar 

  • Roy SC, Atreja SK (2008) Production of superoxide anion and hydrogen peroxide by capacitating buffalo (Bubalus bubalis) spermatozoa animal reproduction. Science 103:260–270

    CAS  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation frm organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755

    CAS  Google Scholar 

  • Rusak SA, Richard LE, Peake BM, Cooper WJ, Bodeker GE (2010) The influence of solar radiation on hydrogen peroxide concentrations in freshwater. Mar Freshwater Res 61:1147–1153

    CAS  Google Scholar 

  • Safazadeh-Amiri A, Bolton JR, Cater SR (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res 31:2079–2085

    Google Scholar 

  • Sakugawa H, Kaplan IR (1987) Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method. Atmos Environ 21:1791–1798

    CAS  Google Scholar 

  • Sakugawa H, Kaplan IR, Tsai W, Cohen Y (1990) Atmospheric hydrogen peroxide. Environ Sci Technol 24:1452–1462

    CAS  Google Scholar 

  • Sakugawa H, Kaplan IR, Shepard LS (1993) Measurements of H2O2, aldehydes and organic acids in Los Angeles rainwater: their sources and deposit rates. Atmos Environ 27B:203–219

    CAS  Google Scholar 

  • Sakugawa H, Yamashita T, Fujiwara K (1995) Determination of hydrogen peroxide and organic peroxides in seawater. In: Tsunogai S, Iseki K, Koike I, Oba T (Ed), Global fluxes of carbon and its related substances in the Coastal Sea-Ocean-atmosphere system. M & J Intern pp 452–457

    Google Scholar 

  • Sakugawa H, Takami A, Kawai H, Takeda K, Fujiwara K, Hirata S (2000) The occurrence of organic peroxide in seawater. In: Handa N, Tanoue E, Hama T (eds) Dynamics and characterization of marine organic matter. TERRAPUB/Kluwer, Tokyo, pp 231–240

    Google Scholar 

  • Sakugawa H, Yamashita T, Kwai H, Masuda N, Hashimoto N, Makino S, Nakatani N, Takeda K (2006) Measurements, and production and decomposition mechanisms of hydroperoxides in air, rain, dew, river and drinking waters, Hiroshima prefecture Japan. Geochem 40:47–63 (In Japanese)

    CAS  Google Scholar 

  • Samuilov VD, Bezryadnov DB, Gusev MV, Kitashov AV, Fedorenko TA (2001) Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacteria. Biochem (Moscow) 66:640–645

    CAS  Google Scholar 

  • Samuilov VD, Timofeev KN, Sinitsyn SV, Bezryadnov DB (2004) H2O2-induced inhibition of photosynthetic O2 evolution by Anabaena variabilis cells. Biochem (Moscow) 69:926–933

    CAS  Google Scholar 

  • Sarthou G, Jeandel C, Brisset L, Amouroux D, Besson T, Donard OFX (1997) Fe and H2O2 distributions in the upper water column in the Indian sector of the Southern Ocean Earth. Planetary Sci Lett 147:83–92

    Google Scholar 

  • Sauer F, Beck J, Schuster G, Moortgat GK (2001) Hydrogen peroxide, organic peroxides and organic acids in forested area during FIELDVOC’94 Chemosphere-Global changes. Science 3:309–326

    CAS  Google Scholar 

  • Schmitt-Kopplin P, Hertkorn N, Schulten H-R, Kettrup A (1998) Structural changes in a dissolved soil humic acid during photochemical degradation processes under O2 and N2 atmosphere. Environ Sci Technol 32:2531–2541

    CAS  Google Scholar 

  • Scully NM, Vincent WF (1997) Hydrogen peroxide: a natural tracer of stratification and mixing processes in subarctic lakes. Arch Hydrobiol 139:1–15

    CAS  Google Scholar 

  • Scully NM, Lean DRS, McQueen DJ, Cooper WJ (1995) Photochemical formation of hydrogen peroxide in lakes: effects of dissolved organic carbon and ultraviolet radiation. Can J Fish Aquat Sci 52:2675–2681

    CAS  Google Scholar 

  • Scully NM, McQueen DJ, Lean DRS, Cooper WJ (1996) Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient. Limnol Oceanogr 41:540–548

    CAS  Google Scholar 

  • Scully NM, Vincent WF, Lean DRS, MacIntyre S (1998) Hydrogen peroxide as a natural tracer of mixing in surface layers. Aquat Sci 60:169–186

    CAS  Google Scholar 

  • Senesi N (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: Part II The fluorescence spectroscopy approach. Anal Chim Acta 232:77–106

    CAS  Google Scholar 

  • Serban A, Nissenbaum A (1986) Humic acid association with peroxidase and catalase. Soil Biol Biochem 18:41–44

    CAS  Google Scholar 

  • Sikorsky RJ, Zika RG (1993a) Modeling mixed-layer photochemistry of H2O2: optical and chemical modeling of production. J Geophys Res 98:2315–2328

    Google Scholar 

  • Sikorsky RJ, Zika RG (1993b) Modeling mixed-layer photochemistry of H2O2: physical and chemical modeling of distribution. J Geophys Res 98:2329–2340

    Google Scholar 

  • Sinel’nikov VE (1971) Hydrogen peroxide level in river water, and methods for detecting it. Gibrobiol Zh 7:115–119 (Chem Abst 75:25016a, 1971)

    Google Scholar 

  • Sinel’nikov VE, Demina VI (1974) Origin of hydrogen peroxide contained in the water of open reservoirs. Gidrokhim Mater 60:30–40 (Chem Abst 83:151980j, 1975)

    Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D et al (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    CAS  Google Scholar 

  • Southworth BA, Voelker BM (2003) Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environ Sci Technol 37:1130–1136

    CAS  Google Scholar 

  • Stevens SE Jr, Patterson COP, Myers J (1973) The production of hydrogen peroxide by blue-green algae: A survey. J Phycol 9:427–430

    CAS  Google Scholar 

  • Stolarski R, Bojkov R, Bishop L, Zereros C, Staehelin J, Zawodny J (1992) Measured trends in stratospheric ozone. Science 256:342–349

    CAS  Google Scholar 

  • Szymczak R, Waite TD (1991) Photochemical activity in waters of the Great Barrier Reef. Estuar Coastal Shelf Sci 33:605–622

    CAS  Google Scholar 

  • Takahashi M, Hama T, Matsunaga K, Handa N (1995) Photosynthetic organic carbon production and respiratory organic carbon consumption in the trophogenic layer of Lake Biwa. J Plankton Res 17:1017–1025

    Google Scholar 

  • Takeda K, Takedoi H, Yamaji S, Ohta K, Sakugawa H (2004) Determination of hydroxyl radical photoproduction rates in natural waters. Anal Sci 20:153–158

    Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) Ozone tolerance and the ascorbate-dependent hydrogen peroxide decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431

    CAS  Google Scholar 

  • Theiler R, Cook JC, Hager LP, Siuda JF (1978) Halocarbon synthesis by bromoperoxidases. Science 202:1094–1096

    CAS  Google Scholar 

  • Tizaoui C, Bouselmi L, Mansouri L, Ghrabi A (2007) Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. J Hazard Mater 140(1–2):316–324

    CAS  Google Scholar 

  • US Environmental Protection Agency (2000) Improved enumeration methods for the recreational water quality indicators enterococci and escherichia coli, US EPA office of science and technology, 20460 Washington, March 2000, EPA/821/R-97/004

    Google Scholar 

  • van Baalen C, Marler JE (1966) Occurrence of hydrogen peroxide in sea water. Nature 211:951

    Google Scholar 

  • Vedeneeva YA, Lobanov AV, Kholuiskaya SN, Komissarov GG (2005) Abstracts of papers, VI all-Russia conference ‘Molecular Modeling’, Moscow, p 54

    Google Scholar 

  • Vermilyea AW, Hansard SP, Voelker BM (2010a) Dark production of hydrogen peroxide in the Gulf of Alaska. Limnol Oceanogr 55:580–588

    CAS  Google Scholar 

  • Vermilyea AW, Dixon TC, Voelker BM (2010b) Use of H 182 O2 to measure absolute rates of dark H2O2 production in freshwater systems. Environ Sci Technol 44:3066–3072

    CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E (2003) New processes in the environmental chemistry of nitrite 2. The role of hydrogen peroxide. Environ Sci Technol 37:4635–4641

    CAS  Google Scholar 

  • Vione D, Lauri V, Minero C, Maurino M, Malandrino M, Carlotti ME, Olariu RI, Arsene C (2009) Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight. Aquat Sci 71:34–45

    CAS  Google Scholar 

  • Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31:1004–1011

    CAS  Google Scholar 

  • Voelker BM, Sedlak DL, Zafiriou OC (2000) Chemistry of superoxide radical in seawater: reactions with organic Cu complexes. Environ Sci Technol 34:1036–1042

    CAS  Google Scholar 

  • von Sonntag C, Mark G, Mertens R, Schuchmann MN, Schuchmann H-P (1993) UV-radiation and/or oxidants in water pollution control. J Water Supply Res Technol—Aqua 42:201–211

    Google Scholar 

  • Wade TJ, Pai N, Eisenberg JS, Colford JM (2003) Do US environmental protection agency water quality guidelines for recreational water prevent gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect 111:1102–1109

    Google Scholar 

  • Wang GS, Liao CH, Wu FJ (2001) Photodegradation of humic acids in the presence of hydrogen peroxide. Chemosphere 42:379–387

    CAS  Google Scholar 

  • Wang W, Johnson CG, Takeda K, Zafiriou OC (2009) Measuring the photochemical production of carbon dioxide from marine dissolved organic matter by Pool isotope exchange. Environ Sci Technol 43:8604–8609

    CAS  Google Scholar 

  • Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol 18:217–225

    Google Scholar 

  • Westerhoff P, Aiken G, Army G, Debroux J (1999) Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res 33:2265–2276

    CAS  Google Scholar 

  • Wong GTF, Dunstan WM, Kim D-B (2003) The decomposition of hydrogen peroxide by marine phytoplankton La décomposition du peroxyde d’hydrogène par le phytoplancton marin. Oceanol Acta 26:191–198

    CAS  Google Scholar 

  • Wu FC, Mills RB, Evans RD, Dillon PJ (2005) Photodegradation-induced changes in dissolved organic matter in acidic waters. Can J Fish Aqua Sci 62:1019–1027

    CAS  Google Scholar 

  • Xie HX, Zafiriou OC (2009) Evidence for significant photochemical production of carbon monoxide by particles in coastal and oligotrophic marine waters. Geophys Res Lett 36:L23606. doi:101029/2009GL041158

    Google Scholar 

  • Xie HX, Zafiriou OC, Umile TP, Kieber DJ (2005) Biological consumption of carbon monoxide in Delaware Bay, NW Atlantic and Beaufort Sea. Mar Ecol Prog Ser 290:1–14

    CAS  Google Scholar 

  • Yamashita Y, Tanoue E (2004) In situ production of chromophoric dissolved organic matter in coastal environments. Geophys Res Lett 31 [doi: 101029/2004GL019734]

    Google Scholar 

  • Yamashita Y, Tanoue E (2008) Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nature Geosci 579-582 doi:101038/ngeo279

    Google Scholar 

  • Yocis BH, Kieber DJ, Mopper K (2000) Photochemical production of hydrogen peroxide in Antarctic waters. Deep Sea Res Part I: Oceanogr Res Pap 47:1077–1099

    CAS  Google Scholar 

  • Yoshioka T, Ueda S, Khodzher T, Bashenkhaeva N, Korovyakova I, Sorokovikova L, Gorbunova L (2002) Distribution of dissolved organic carbon in Lake Baikal and its watershed. Limnology 3:159–168

    CAS  Google Scholar 

  • Yuan J, Shiller AM (2000) The variation of hydrogen peroxide in rainwater over the South and central Atlantic Ocean. Atmos Envriron 34:3973–3980

    CAS  Google Scholar 

  • Yuan J, Shiller AM (2001) The distribution of hydrogen peroxide in the southern and central Atlantic ocean. Deep-Sea Res II 48:2947–2970

    CAS  Google Scholar 

  • Zafiriou OC (1990) Chemistry of superoxide ion-radical (O −.2 ) in seawater. I. pKasw(HOO) and uncatalyzed dismutation kinetics studied by pulse radiolysis. Mar Chem 30:31–43

    CAS  Google Scholar 

  • Zafiriou OC, Voelker BM, Sedlak DL (1998) Chemistry of the superoxide radical (O −.2 ) in seawater: reactions with inorganic copper complexes. J Phys Chem A 102:5693–5700

    CAS  Google Scholar 

  • Zepp RG, Schlotzhauer PF (1983) Influence of algae on photolysis rates of chemicals in water. Environ Sci Technol 17:462–468

    CAS  Google Scholar 

  • Zepp RG, Skurlatov YI, Pierce JT (1986) Algal-induced decay and formation of hydrogen peroxide in water. ACS Symp Ser 327, Am Chem Soc, pp 215–224

    Google Scholar 

  • Zepp RG, Skurlatov YI, Pierce JT (1987a) Algal-induced decay and formation of hydrogen peroxide in water: its possible role in oxidation of anilines by algae. In: Zika RG and Cooper WJ (Ed), Photochemistry of environmental aquatic systems, ACS Symposium Series No. 327, Am Chem Soc, Washington, pp 213–224

    Google Scholar 

  • Zepp RG, Braun AM, Hoigne J, Leenheer JA (1987b) Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environ Sci Technol 21:485–490

    CAS  Google Scholar 

  • Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-fenton reaction. Environ Sci Technol 26:313–319

    CAS  Google Scholar 

  • Zhang Y, van Dijk MA, Liu M, Zhu G, Qin B (2009) The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Res 43:4685–4697

    CAS  Google Scholar 

  • Zhang WJ, Yu Y, Wang XX (2010) Photocatralytic degradation of methyl orange in TiO2 suspension-Ti electrode system. Abstrct in Bioinformatrics and Biomedical engineering 2010 4th International conference, 18–20 June 2010, Chengdu, China

    Google Scholar 

  • Zhao Y, Yu Y, Feng W, Shen Y (2003) Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake-Lake Donghu, Wuhan, China. Hydrobiol 498:85–95

    Google Scholar 

  • Zika RG, Moffett W, Petasne RG, Cooper WJ, Saltzman ES (1985a) Spatial and temporal variations of hydrogen peroxide in Gulf of Mexico waters. Geochim Cosmochim Acta 49:1173–1184

    CAS  Google Scholar 

  • Zika RG, Saltzman ES, Cooper WJ (1985b) Hydrogen peroxide concentrations in the Peru upwelling area. Mar Chem 17:265–275

    CAS  Google Scholar 

  • Zuo Y, Hoigné J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ Sci Technol 26:1014–1022

    CAS  Google Scholar 

  • Zuo Y, Hoigné J (1993) Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water. Science 260:71–73

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Li Wen of China University of Geosciences, Wuhan for her generous help during the manuscript preparation. This work was financially supported jointly by the National Natural Science Foundation of China (Grant Nos. 1314765) and Institute of geochemistry, Chinese Academy of Sciences, China. This study was also partly supported by Hiroshima University, Japan; University Turin, Italy; Brook Byers Institute for Sustainable Systems at Georgia Institute of Technology, the United States; and Chinese Research Academy of Environmental Sciences, China. This study acknowledges the Copyright (1990) by the Association for the Sciences of Limnology and Oceanography, Inc.; copyright (1993) by The Geochemical Society of Japan; reprinted from Analytica Chimica Acta, 627(2), Olasehinde EF, Makino S, Kondo H, Takeda K, Sakugawa H, Application of Fenton reaction for nanomolar determination of hydrogen peroxide in seawater, 270–276. Copyright (2008) with permission from Elsevier; Copyright (2009) CSIRO; reprinted (adapted) with permission from Sakugawa H, Kaplan IR, Tsai W, Cohen Y, Atmospheric hydrogen peroxide, Environ Sci Technol, 24(10), 1452–1462. Copyright (1990) American Chemical Society; Springer and the original Biochemistry (Moscow), 66, 2001, 640–645, Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacteria. Biochem (Moscow), Samuilov VD, Bezryadnov DB, Gusev MV, Kitashov AV, Fedorenko TA, with kind permission from Springer Science and Business Media; and Original Russian Text Copyright (2004) by Lobanov AV, Kholuiskaya SN, GG Komissarov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan M. G. Mostofa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mostofa, K.M.G., Liu, Cq., Sakugawa, H., Vione, D., Minakata, D., Wu, F. (2013). Photoinduced and Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters. In: Mostofa, K., Yoshioka, T., Mottaleb, A., Vione, D. (eds) Photobiogeochemistry of Organic Matter. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32223-5_2

Download citation

Publish with us

Policies and ethics