Skip to main content

Ion Implantation

  • Chapter
  • First Online:
Mössbauer Spectroscopy

Abstract

In this tutorial we describe the basic principles of the ion implantation technique and we demonstrate that emission Mössbauer spectroscopy is an extremely powerful technique to investigate the atomic and electronic configuration around implanted atoms. The physics of dilute atoms in materials, the final lattice sites and their chemical state as well as diffusion phenomena can be studied. We focus on the latest developments of implantation Mössbauer spectroscopy, where three accelerator facilities, i.e., Hahn-Meitner Institute Berlin, ISOLDE-CERN and RIKEN, have intensively been used for materials research in in-beam and on-line Mössbauer experiments immediately after implantation of the nuclear probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (Wiley-VCH, New York, 2006)

    Google Scholar 

  2. Electron Microscope

    Google Scholar 

  3. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005

    Google Scholar 

  4. R.L. Mössbauer, Z. Physik, 151, 124 (1958)

    Google Scholar 

  5. R.L. Mössbauer, Naturwissenschaften, 45, 538 (1958)

    Google Scholar 

  6. R.L. Mössbauer, Z. Naturforsch. 14a, 211 (1959)

    Google Scholar 

  7. Hyperfine Interactions

    Google Scholar 

  8. L.C. Feldman, J.W. Mayer (eds.), Fundamentals of Surface and Thin Film Analysis. (Appleton and Lange, New York, 1986)

    Google Scholar 

  9. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids ed. (Pergamon Press, New York, 1985); http://www.srim.org/

  10. G. Langouche, Hyperfine Interaction of Defects in Semiconductors (Elsevier, Amsterdam, 1992)

    Google Scholar 

  11. G. Langouche, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, G. Long, F. Grandjean (eds.), Vol. 3, (Plenum Press, New York and London, 1989), pp. 445–512

    Google Scholar 

  12. H. de Waard, S.A. Drentje, Phys. Lett. 20, 38 (1966)

    Google Scholar 

  13. G.L. Latshaw, Stanford University, PhD Thesis, 1971

    Google Scholar 

  14. L. Niesen, Hyperfine interact. 13, 65–88 (1983)

    Google Scholar 

  15. G. Weyer, Hyperfine Interact. 27, 249–262 (1986)

    Google Scholar 

  16. H. de Waard, Hyperfine Interact. 40, 31–48 (1988)

    Google Scholar 

  17. G. Langouche, Hyperfine Interact. 45, 199–216 (1989)

    Google Scholar 

  18. G. Langouche, Hyperfine Interact. 72, 217–228 (1992)

    Google Scholar 

  19. M. de Coster, H. Pollak, S. Amelinckx, in Proceedings of the 2nd International Conference on the Mössbauer Effect, D.M.J. Compton, A.H. Schoen (eds.) (Wiley, New York, 1962), p. 289

    Google Scholar 

  20. P.C. Norem, G.K. Wertheim, J. Phys. Chem. Solids 23, 1111 (1962)

    Google Scholar 

  21. G. Langouche, M. de Potter, I. Dézsi, M. Van Rossum, Radiat. Effect Lett. 67, 404 (1982)

    Google Scholar 

  22. J.A. Sawicki, B.D. Sawicka, Phys. Stat. Sol. b 86, K159 (1978)

    Google Scholar 

  23. G.L. Latshaw, P.B. Russell, S.S. Hanna, Hyperfine Interact. 8, 105–127 (1980)

    Google Scholar 

  24. J.A. Sawicka, B.D., Sawicki, J.A. Phys. Lett. A 64, 311 (1977)

    Google Scholar 

  25. G. Langouche, M. de Potter, Nucl. Instrum. Methods B 19/20, 322 (1987)

    Google Scholar 

  26. P. Schwalbach, S. Laubach, M. Hartick, E. Kankeleit, B. Keck, M. Menningen, R. Sielemann, Phys. Rev. Lett. 64, 1274 (1990)

    Google Scholar 

  27. G. Langouche, M. de Potter, D. Schroyen, Phys. Rev. Lett. 53, 1364 (1984)

    Google Scholar 

  28. W. Bergholz, Physica B 16, 312 (1983)

    Google Scholar 

  29. M. Menningen, R. Sieleman, G. Vogl, Y. Yoshida, K. Bonde-Nielsen, G. Weyer, Europhys. Lett. 3, 927–933 (1987)

    Google Scholar 

  30. A. Heiming, K.H. Steinmetzt, G. Vogl, Y. Yoshida, J. Phys. F: Met. Phys. 18, 1491–1503 (1988)

    Google Scholar 

  31. Y. Yoshida, M. Menningen, R. Sielemann, G. Vogl, G. Weyer, K. Schroeder, Phys. Rev. Lett. 61, 195 (1988)

    Google Scholar 

  32. Y. Yoshida, Hyperfine Interact. 47, 95–113 (1989)

    Google Scholar 

  33. R. Sielemann, Y. Yoshida, Hyperfine Interact. 68, 119–130 (1991)

    Google Scholar 

  34. B. Keck, R.Sielemann, Y. Yoshida, Phys. Rev.Lett.

    Google Scholar 

  35. D. Forkel-Wirth, ISOLDE laboratory portrait. Hyperfine Interact. 129 (2000)

    Google Scholar 

  36. G. Weyer, Hyperfine Interact. 129, 371–390 (2000)

    Google Scholar 

  37. G. Weyer, J.W. Petersen, S. Damgaard, H.L. Nielsen, Phys. Rev. Lett. 44, 155–157 (1980)

    Google Scholar 

  38. H.P. Gunnlaugsson, G. Weyer, M. Dietrich and the ISOLDE collaboration, M. Fanciulli, K. Bharuth-Ram, R. Sielemann, Appl. Phys. Lett. 80, 2657–2659 (2002)

    Google Scholar 

  39. Y. Kobayashi, Y. Yoshida et al., Hyperfine Interact. 126, 417 (2000)

    Google Scholar 

  40. Y. Yoshida, K. Kobayashi et al., Defect Diffus. Forum 194–199, 611 (2001)

    Google Scholar 

  41. Y. Yoshida; ALTECH 2003 Analytical and Diagnostic Techniques for Semiconductor Materials, Devices, and Processes, 479 (2003)

    Google Scholar 

  42. Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, A. Yoshida, H. Ueno, F. Shimura, F. Ambe; Physica B, 376-377, 69 (2006)

    Google Scholar 

  43. Y. Yoshida, K. Suzuki, Y. Kobayashi, T. Nagatomo, Y. Akiyama, K. Yukihira, K. Hayakawa, H. Ueno, A. Yoshimi, D. Nagae, K. Asahi, G. Langouche, Hyperfine Interact. 204, 133–137 (2012)

    Google Scholar 

  44. A.A. Istratov, H. Hieslmair and E. R. Weber; Appl. Phys. A 69, 13 (1999)

    Google Scholar 

  45. S. K. Estreicher, M. Sanati, N. Gonzalez Szawacki, Phys. Rev. B, 77, 125214 (2008)

    Google Scholar 

  46. J. Kübler, A. E. Kumm, H. Overhof, P. Schwalbach, M. Hartick, E. Kankeleit, B. Keck, L.Wende, R.Sielemann, Z. Phys., B 92, 155 (1993)

    Google Scholar 

  47. Y. Yoshida, S. Horie, K. Niira, K. Fukui and K. Shirasawa; Physica B, 376–377, 227 (2006)

    Google Scholar 

  48. T. Diaz de la Rubia and G. H. ilmer, Phys. Rev.Lett., 74, 2507-2510 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Langouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langouche, G., Yoshida, Y. (2013). Ion Implantation. In: Yoshida, Y., Langouche, G. (eds) Mössbauer Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32220-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32220-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32219-8

  • Online ISBN: 978-3-642-32220-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics