Skip to main content

The Contribution of 57Fe Mössbauer Spectrometry to Investigate Magnetic Nanomaterials

  • Chapter
  • First Online:

Abstract

Fe containing nanomaterials and nanoparticles are quite important because their unusual physical properties make them excellent candidates for different applications. 57Fe Mössbauer spectrometry appears as an excellent tool to provide structural and magnetic data through the hyperfine parameters. After a short definition of nanostructures and their main characteristics originated from confinement effects, we established the relevant features to understand nanoscale magnetism. Some examples have been thus selected to illustrate first how Mössbauer spectrometry contributes to understand the chemical, structural and magnetic nature of nanostructures and the role of surface and grain boundaries. Then, they also demonstrate also how the fitting procedure remains a delicate task to model the hyperfine structure and does require on the one hand large experimental data basis obtained from different techniques including structural, morphological and magnetic parameters and on the other hand materials with high knowledge and control of synthesis conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Binnig, H. Rohrer, Scanning tunnelling microscopy. IBM J. Res. Dev. 30, 4 (1986)

    Google Scholar 

  2. G. Binnig, C.L. Quate, C. Gerber, Atom force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  ADS  Google Scholar 

  3. G. Binnig, H. Rohrer, Scanning tunnelling microscopy—from birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1986)

    Article  ADS  Google Scholar 

  4. G. Binnig, H. Rohrer, Scanning tunnelling microscopy. Surf. Sci. 126, 236–244 (1983)

    Article  ADS  Google Scholar 

  5. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Buckminsterfullerene. Nature 318, 162–163 (1985). C-60

    Article  ADS  Google Scholar 

  6. W.W. Adams, R.H. Baughman, Richard E. Smalley (1943–2005)—Retrospective. Science 310, 5756 (2005)

    Article  Google Scholar 

  7. P. Grunberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered magnetic-structures—evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986)

    Article  ADS  Google Scholar 

  8. M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001) Fe/(001) Cr Magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  9. L. Lutterotti, MAUD program, CPD, Newsletter (IUCr) No. 24. (2000), web site: http://www.ing.unitn.it/luttero/maud

  10. S. Morup, J. Dumesic, H. Topsoe, in Applications of Mössbauer Spectroscopy, ed. by R. Cohen. vol. 2 (Academic, New York, 1980), pp. 1–53

    Google Scholar 

  11. J.L. Dormann, Rev. Phys. Appl. 16, 275 (1981)

    Article  Google Scholar 

  12. S Morup, in Mössbauer Spectroscopy applied to Inorganic Chemistry, ed. by G.J. Long, vol 2 (Plenum Press, New York, 1987), p. 89

    Google Scholar 

  13. J.L. Dormann, D. Fiorani (eds.), Magnetic Properties of Fine Particles (North-Holland, Amsterdam, 1992)

    Google Scholar 

  14. E. Tronc, Nanoparticles. Nuovo Cimento D18, 163–180 (1996)

    Article  ADS  Google Scholar 

  15. J.L. Dormann, D. Fiorani, E. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 293 (1997)

    Google Scholar 

  16. J. Chappert, J. de Phys. C6(35), 71 (1974)

    Google Scholar 

  17. J. Chappert, J. Teillet, F. Varret, J. Magn. Magn. Mater. 11, 200 (1979)

    Article  ADS  Google Scholar 

  18. J.M. Greneche, Noncollinear magnetic structures investigated by high-field Mössbauer spectrometry. Acta Physica Slovaca 45, 45–55 (1995)

    Google Scholar 

  19. J.M.D. Coey, P.W. Readman, New spin structure in an amorphous gel. Nature 246, 476–478 (1973)

    Article  ADS  Google Scholar 

  20. S. Mørup, M.F. Hansen, Superparamagnetic Particles, in Handbook of Magnetism and Advanced Magnetic Materials. Novel Materials, vol. 4, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester, 2007), pp. 2159–2176

    Google Scholar 

  21. S. Mørup, C. Frandsen, M.F. Hansen, Magnetic Properties of Nanoparticles, in The Oxford Handbook of Nanoscience and Technology: Materials, Structures, Properties and Characterization Techniques, ed. by A.V. Narlikar, Y.Y. Fu (Oxford University Press, Oxford, 2010)

    Google Scholar 

  22. S. Mørup, M.F. Hansen, C. Frandsen, Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010)

    Article  Google Scholar 

  23. S. Mørup, M.F. Hansen, C. Frandsen, Magnetic nanoparticles. Compr. Nanosci. Technol. 1, 437–491 (2011)

    Article  Google Scholar 

  24. J. Frenkel, J. Doefman, Spontaneous and induced magnetization in ferromagnetic bodies. Nature 126, 274–275 (1930)

    Article  ADS  MATH  Google Scholar 

  25. R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000)

    Google Scholar 

  26. E. Thellier, Sur les propriétés de l’aimantation thermorémanente des terres cuites. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 213, 1019–1022 (1941)

    Google Scholar 

  27. L. Néel, Some theoretical aspects of rockmagnetism. Adv. Phys. 4, 191–243 (1955)

    Article  ADS  Google Scholar 

  28. L. Néel, Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales de Géophysique 5, 99–136 (1949)

    Google Scholar 

  29. L. Néel, Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 228, 664–666 (1949)

    Google Scholar 

  30. W.F. Brown Jr, Thermal fluctuations of a single domain particle. Phys. Rev. 130, 1677–1686 (1963)

    Article  ADS  Google Scholar 

  31. A. Aharoni, Complete eigen-value spectrum for the nucleation in a ferromagnetic prolate spheroid. Phys. Rev. 131, 1478–1482 (1963)

    Article  ADS  Google Scholar 

  32. J.L. Dormann, L. Bessais, D. Fiorani, A dynamic study of small interacting particles-superparamgnetic model and spin-glass laws. J. Phys. C Solid State Phys. 21, 2015–2034 (1988)

    Article  ADS  Google Scholar 

  33. D. Fiorani, J.L. Dormann, R. Cherkaoui et al., Collective magnetic state in nanoparticles systems. J. Magn. Magn. Mater. 196–197, 143–147 (1999)

    Article  Google Scholar 

  34. S. Mørup, Superparamagnetism and spin glass ordering in magnetic nanocomposites. Europhys. Lett. 28, 671–676 (1994)

    Article  ADS  Google Scholar 

  35. J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)

    Article  ADS  Google Scholar 

  36. E. Tronc, P. Prené, J.P. Jolivet, J.L. Dormann, J.M. Greneche, Spin-canting in γ-Fe2O3 Nanoparticles. Hyperfine Interact. 112, 97–100 (1997)

    Article  ADS  Google Scholar 

  37. E. Tronc, A. Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D. Fiorani, A.M. Testa, J.M. Greneche, J.P. Jolivet, Surface-related properties of γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 221, 63–79 (2000)

    Article  ADS  Google Scholar 

  38. E. Tronc, D. Fiorani, M. Noguès, A.M. Testa, F. Lucari, F. D’Orazio, J.M. Greneche, W. Wernsdorfer, N. Galvez, C. Chanéac, D. Mailly, M. Verdaguer, J.P. Jolivet, Surface effects in noninteracting and interacting γ-Fe2O3 nanoparticles. J. Magn. Magn. Mater. 262, 6–14 (2003)

    Article  ADS  Google Scholar 

  39. E. Tronc, M. Nogues, C. Chaneac, F. Lucari, F.D. Orazio, J.M. Greneche, J.P. Jolivet, D. Fiorani, A.M. Testa, Magnetic properties of γ-Fe2O3 dispersed particles: size and matrix effects. J. Magn. Magn. Mater. 272–276, 1474–1475 (2004)

    Article  Google Scholar 

  40. A. Slawska-Waniewska, P. Didukh, J.M. Greneche, P.C. Fannin, Mössbauer and magnetisation studies of CoFe2O4 particles in a magnetic fluid. J. Magn. Magn. Mater. 215–216, 227–230 (2000)

    Article  Google Scholar 

  41. T.J. Daou, S. Begin-Colin, J.M. Greneche, F. Thomas, A. Derory, P. Bernhardt, P. Legare, G. Pourroy, Phosphate adsorption properties of magnetite-based nanoparticles. Chem. Mater. 19, 4494–4505 (2007)

    Article  Google Scholar 

  42. T.J. Daou, G. Pourroy, S. Bégin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, G. Rogez, Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18, 4399–4404 (2006)

    Article  Google Scholar 

  43. T.J. Daou, J.M. Greneche, S.J. Lee, S. Lee, C. Lefevre, S. Bégin-Colin, G. Pourroy, Spin canting of maghemite studied by NMR and in-field Mössbauer spectrometry. J. Phys. Chem. C 114, 8794–8799 (2010)

    Article  Google Scholar 

  44. E. Lima Jr, E. De Biasi, M. Mansilla Vasquez, M.E. Saleta, F. Effenberg, L.M. Rossi, R. Cohen, H.R. Rechenberg, R.D. Zysler, Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J. Appl. Phys. 108, 103919 (2010)

    Article  ADS  Google Scholar 

  45. E.C. Sousa, H.R. Rechenberg, J. Depeyrot, J.A. Gomes, R. Aquino, F.A. Tourinho, V. Dupuis, R. Perzynski, In-field Mössbauer study of disordered surface spins in core/shell ferrite nanoparticles. J. Appl. Phys. 106, 093901 (2009)

    Article  ADS  Google Scholar 

  46. A.T. Ngo, P. Bonville, M.P. Pileni, Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J. Appl. Phys. 89, 3370–3376 (2001)

    Article  ADS  Google Scholar 

  47. R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  48. R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr, S. Foner, Surface spin disorder in ferrite nanoparticles (invited). J. Appl. Phys. 81, 5552–5557 (1997)

    Article  ADS  Google Scholar 

  49. H. Kachkachi, A. Ezzir, M. Noguès, E. Tronc, Surface effects in nanoparticles: application to maghemite γ-Fe2O3. Eur. Phys. J. B 14, 681 (2000)

    Article  ADS  Google Scholar 

  50. R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359 (1999)

    Article  ADS  Google Scholar 

  51. Y. Labaye, O. Crisan, L. Berger, J.M. Greneche, J.M.D. Coey, Surface anisotropy in ferromagnetic nanoparticles. J. Appl. Phys. 91, 8715–8717 (2002)

    Article  ADS  Google Scholar 

  52. J. Restrepo, Y. Labaye, J.M. Greneche, Surface anisotropy in maghemite nanoparticles. Phys. B 384, 221–223 (2006)

    Article  ADS  Google Scholar 

  53. L. Néel, Propriétés magnétiques des ferrites-ferrimagnétisme et antiferromagnétisme. Annales de Physique 3, 137–198 (1948)

    Google Scholar 

  54. E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327 (1939)

    Article  ADS  Google Scholar 

  55. E.J.W. Verwey, E.L. Heilmann, Physical properties and cation arrangement of oxides with spinel structures 1: cation arrangement in spinels. J. Chem. Phys. 15, 174–180 (1947)

    Article  ADS  Google Scholar 

  56. E.J.W. Verwey, P.W. Haayman, F.C. Romeijan, Physical properties and cation arrangement of oxides with spinel structures 2: electronic conductivity. J. Chem. Phys. 15, 181 (1947)

    Article  ADS  Google Scholar 

  57. I. Leonov, A.N. Yaresko, On the Verwey charge ordering in magnetite. J. Phys. Condens. Matter 19, 021001 (2007)

    Article  ADS  Google Scholar 

  58. L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner, S. Bjarman, Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyp. Interact. 5, 201–214 (1978)

    Article  Google Scholar 

  59. A.C. Doriguetto, N.G. Fernandes, A.I.C. Persiano, E. Nunes Filho, J.M. Greneche, J.D. Fabris, Characterization of a natural magnetite. Phys. Chem. Miner. 30, 249–255 (2003)

    ADS  Google Scholar 

  60. Ö. Helgason, J.-M. Greneche, F.J. Berry, S. Mørup, F. Mosselmans, Tin- and Titanium-doped γ-Fe2O3 (Maghemite). J. Phys. Condens. Matter 13, 10785–10797 (2001)

    Article  ADS  Google Scholar 

  61. R.J. Armstron, A.H. Morrish, G.A. Sawatzky, Mössbauer study of ferric ions in tetrahedral and octahedral sites of a spinel. Phys. Lett. 23, 414 (1966)

    Article  ADS  Google Scholar 

  62. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Cation distributions in octahedral and tetrahedral sites of the Ferrimagnetic Spinel CoFe2O4. J. Appl. Phys. 39, 1204–1206 (1968)

    Article  ADS  Google Scholar 

  63. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969)

    Article  ADS  Google Scholar 

  64. L.K. Leung, B.J. Evans, A.H. Morrish, Low temperature Mössbauer study of a Nickel-Zinc ferrite ZnXNi1-XFe2O4. Phys. Rev. B 8, 29–43 (1973)

    Article  ADS  Google Scholar 

  65. A.H. Morrish, P.E. Clark, High-Field Mössbauer study of manganese-zinc ferrites. Phys. Rev. B 11, 278–286 (1975)

    Article  ADS  Google Scholar 

  66. J.S. Salazar, L. Perez, O. de Abril, L.T. Phuoc, D. Ihiawakrim, M. Vazquez, J.M. Greneche, S. Begin-Colin, G. Pourroy, Magnetic Iron Oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23, 1379–1386 (2011)

    Article  Google Scholar 

  67. T.J. Daou, G. Pourroy, J.M. Greneche, A. Bertin, D. Felder-Flesch, S. Begin-Colin, Water soluble dendronized iron oxide nanoparticles. Dalton Trans. 4442–4449 (2009)

    Google Scholar 

  68. D. Faivre, L.H. Böttger, B.F. Matzanke, D. Schüler, Intracellular magnetite biomineralization in Bacteria proceeds by a distinct pathway involving membrane-bound Ferritin and an Iron(II) Species. Angew. Chem. Int. Ed. 46, 8495–8499 (2007)

    Article  Google Scholar 

  69. G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)

    Article  ADS  Google Scholar 

  70. I. Dézsi, F. Cs, Á. Gombkötő, I. Szűcs, J. Gubicza, T. Ungár, Phase transition in nanomagnetite. J. Appl. Phys. 103, 104312 (2008)

    Article  ADS  Google Scholar 

  71. S. Chkoundali, S. Ammar, N. Jouini, F. Fievet, P. Molinié, M. Danot, F. Villain, J.M. Greneche, Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. J. Phys. Condens. Matter 16, 4357–4372 (2004)

    Article  ADS  Google Scholar 

  72. S. Ammar, N. Jouini, F. Fiévet, Z. Beji, L. Smiri, P. Molinié, M. Danot, J.M. Greneche, Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. J. Phys. Condens. Matter 18, 9055–9069 (2006)

    Article  ADS  Google Scholar 

  73. D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, D. Fiorani, Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter 23, 426004 (2011)

    Article  ADS  Google Scholar 

  74. M. Artus, L. Ben Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.M. Greneche, S. Ammar, F. Fiévet, Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol. J. Phys. Condens. Matter 23, 506001 (2011)

    Article  Google Scholar 

  75. S. Burianova, J.P. Vejpravova, P. Holec, J. Plocek, D. Niznansky, Surface spin effects in La-doped CoFe2O4 nanoparticles prepared by microemulsion route. J. Appl. Phys. 110, 073902 (2011)

    Article  ADS  Google Scholar 

  76. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, K. Hsu, C. Vittoria, V.G. Harris, Large tunability of Néel temperature by growth-rate-induced cation inversion in Mn-ferrite nanoparticles. Appl. Phys. Lett. 94, 113109 (2009)

    Article  ADS  Google Scholar 

  77. L. Ben Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.J. Vaulay, V. Richard, J.M. Greneche, F. Villain, F. Fievet, Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater. 320, 3242–3250 (2008)

    Article  Google Scholar 

  78. Z. Beji, L. Smiri, N. Yaacoub, J.M. Greneche, N. Menguy, S. Ammar, F. Fievet, Annealing effect on the magnetic properties of Polyol-made Ni-Zn Ferrite nanoparticles. Chem. Mater. 22, 1350–1366 (2010)

    Article  Google Scholar 

  79. O. Ersen, S. Bégin, M. Houllé, J. Amadou, I. Janowska, J.M. Grenèche, C. Crucifix, C. Pham-Huu, Microstructural investigation of magnetic CoFe2O4 nanowires inside Carbon nanotubes by electron tomography. Nanoletters 8, 1033–1040 (2008)

    Article  ADS  Google Scholar 

  80. Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.M. Greneche, F. Chau, S. Ammar, Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem. Mater. 22, 5420–5429 (2010)

    Article  Google Scholar 

  81. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, V.G. Harris, Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20, 185704 (2009)

    Article  ADS  Google Scholar 

  82. B. Antic, A. Kremenovic, N. Jovic, M.B. Pavlovic, C. Jovalekic, A.S. Nikolic, G.F. Goya, C. Weidenthaler, Magnetization enhancement and cation valences in nonstoichiometric (Mn, Fe)3-δO4 nanoparticles. J. Appl. Phys. 111, 074309 (2012)

    Article  ADS  Google Scholar 

  83. V. Blanco-Gutierrez, F. Jimenez-Villacorta, P. Bonville, M.J. Torralvo-Fernandez, R. Saez-Puche, X-ray absorption spectroscopy and Mössbauer spectroscopy studies of super paramagnetic ZnFe2O4 nanoparticles. J. Phys. Chem. C 115, 1627–1634 (2011)

    Article  Google Scholar 

  84. J.F. Hochepied, P. Bonville, M.P. Pileni, Nonstoichiometric Zinc Ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104, 905–912 (2000)

    Article  Google Scholar 

  85. S.J. Stewart, S.J.A. Figueroa, M.B. Sturla, R.B. Scorzelli, F. Garcia, F.G. Requejo, Magnetic ZnFe2O4 nanoferrites studied by X-ray magnetic circular dichroism and Mössbauer spectroscopy. Physica B 389, 155–158 (2007)

    Article  ADS  Google Scholar 

  86. G.F. Goya, H.R. Rechenberg, M. Chen, W.B. Yelon, Magnetic irreversibility in ultrafine ZnFe2O4 particles. J. Appl. Phys. 87, 8005–8007 (2000)

    Article  ADS  Google Scholar 

  87. J.M. Hastings, L.M. Corliss, An antiferromagnetic transition in Zinc Ferrite. Phys. Rev. 102, 1460–1463 (1956)

    Article  ADS  Google Scholar 

  88. N. Viart, G. Pourroy, J.M. Greneche, Study of metal-ferrite composites: complementary use of 57Fe Mössbauer spectrometry, X-ray diffraction and TG analysis. Eur. J. Phys. Appl. Phys. 18, 33–40 (2002)

    Article  ADS  Google Scholar 

  89. A. Karimi, B. Denizot, F. Hindre, R. Filmon, J.M. Greneche, S. Laurent, T. Jean Daou, S. Begin Colin, J.J. Le Jeune, Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated super paramagnetic iron oxide nanoparticles: formulation and physicochemical studies. J. Nanopart. Res. 12, 1239–1248 (2010)

    Article  Google Scholar 

  90. M.P. Fernández-García, P. Gorria, J.A. Blanco, R. Boada, J. Chaboy, D. Schmool, J.M. Greneche, Microstructure and magnetism of nanoparticles with γ-Fe core surrounded by α-Fe and iron oxide shells. Phys. Rev. B 81, 094418 (2010)

    Article  ADS  Google Scholar 

  91. W. Kundig, H. Bommel, G. Constabaris, R.H. Linquist, Some properties of supported small α-Fe2O3 particles determined with Mössbauer effect. Phys. Rev. 142, 327–333 (1966)

    Article  ADS  Google Scholar 

  92. F. Bodker, S. Morup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994)

    Article  ADS  Google Scholar 

  93. T. Furubayashi, I. Nakatani, N. Saegusa, Magnetic moment and hyperfine field in colloidal fine particles of iron. J. Phys. Soc. Jpn. 56, 1855–1858 (1987)

    Article  ADS  Google Scholar 

  94. B.S. Clausen, S. Mørup, H. Topsøe, Evidence for chemisorption induced changes in the surface electronic and magnetic properties of small iron particles. Surf. Sci. 106, l43–l438 (1981)

    Article  Google Scholar 

  95. R. Birringer, H. Gleiter, H.-P. Klein, P. Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Phys. Lett. 102A, 365–369 (1984)

    ADS  Google Scholar 

  96. F. Bodker, S. Morup, C.A. Oxborros, S. Linderoth, M.B. Madsen, J.W. Niemantsverdriet, Mössbauer studies of ultrafine iron-containing particles on a carbon. J. Phys. Condens. Matter 4, 6555–6568 (1992)

    Article  ADS  Google Scholar 

  97. T. Shinjo, N. Hosoito, T. Takada, Magnetism of Fe interfaces studied by Mössbauer spectroscopy. J. Magn. Magn. Mater. 31–34, 879–880 (1983)

    Article  Google Scholar 

  98. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J. Appl. Phys. 64, 6044 (1988)

    Article  ADS  Google Scholar 

  99. M.E. McHenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999)

    Article  Google Scholar 

  100. G. Herzer, in Nanocrystalline soft magnetic alloys, Handbook of Magnetic Materials vol. 10 ed by K.H.J. Buschow (Elsevier Science, 1997), pp. 415–462)

    Google Scholar 

  101. G. Herzer, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 4, ed. by H. Kronmüller, S. Parkin (Wiley, Hoboken, 2007), p. 1882

    Google Scholar 

  102. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, High saturation magnetization and soft magnetic properties of bcc Fe Zr B alloys with ultrafine grain structure. Mater. Trans. JIM 32, 743 (1990)

    Google Scholar 

  103. K. Suzuki, A. Makino, A. Inoue, T. Masumoto, Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M = transition metal) alloys with high saturation magnetization. J. Appl. Phys. 70, 6232 (1991)

    Article  ADS  Google Scholar 

  104. M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, V.G. Harris, Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773 (1998)

    Article  ADS  Google Scholar 

  105. J.M. Greneche, M. Miglierini, Mössbauer spectroscopy materials science, in Mössbauer Spectrometry Applied to Iron-Based Nanocrystalline Alloys: I High Temperature Studies, ed. by M. Miglierini, D. Petridis (Kluwer Academic Publishers, Dordrecht, 1999), pp. 243–256

    Google Scholar 

  106. M. Miglierini, J.M. Greneche, Mössbauer Spectroscopy in Materials Science, in Mössbauer Spectrometry Applied to Iron-Based Nanocrystalline Alloys: I Hyperfine Field Distributions, ed. by M. Miglierini, D. Petridis (Kluwer Academic Publishers, Dordrecht, 1999), pp. 257–272

    Google Scholar 

  107. T. Kemény, D. Kaptás, L.F. Kiss, J. Balogh, I. Vincze, S. Szabó, D.L. Beke, Structure and magnetic properties of nanocrystalline soft ferromagnets. Hyperfine Interact. 130, 181–219 (2000)

    Article  ADS  Google Scholar 

  108. J.-M. Greneche, Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, in Intergranular Phase in Nanocrystalline Alloys: Structural and Magnetic Aspects, ed. by B. Idzikowski, P. Svec, M. Miglierini, D. Petridis (Kluwer Academic, Dordrecht, 2005), pp. 373–384

    Google Scholar 

  109. M. Kopcewicz, Radio-Frequency Mössbauer Spectroscopy in the Investigation of Nanocrystalline Alloys, in Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, ed. by B. Idzikowski, P. Svec, M. Miglierini, D. Petridis (Kluwer Academic, Dordrecht, 2005), pp. 395–407

    Chapter  Google Scholar 

  110. I. Škorvánek, P. Švec, J.M. Greneche, J. Kováč, J. Marcin, R. Gerling, Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloys. J. Phys. Condens. Matter 14, 4717–4736 (2002)

    Article  ADS  Google Scholar 

  111. M. Fujinami, Y. Hashiguchi, T. Yamamoto, Crystalline transformations in amorphous Fe73.5Cu1Nb3Si16.5B6 Alloy. Jpn. J. Appl. Phys. 29, L477–L480 (1990)

    Article  ADS  Google Scholar 

  112. J.Z. Jiang, F. Aubertin, U. Gonser, H.R. Hilzinger, Mössbauer spectroscopy and X-ray diffraction studies of the crystallization in the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. Zeitschrift fur Metallkunde 82, 698–702 (1991)

    Google Scholar 

  113. J. Jiang, T. Zemcik, F. Aubertin, U. Gonser, Investigation of the phases and magnetization orientation in crystalline Fe73.5Cu1Nb3Si16.5B6 alloy. J. Mater. Sci. Lett. 10, 763–764 (1991)

    Article  Google Scholar 

  114. G. Hampel, A. Pundt, J. Hesse, Crystallization of Fe73.5Cu1Nb3Si13.5B9 structure and kinetics examined by X-ray diffraction and Mössbauer effect spectroscopy. J. Phys. Condens. Matter 4, 3195–3214 (1992)

    Article  ADS  Google Scholar 

  115. A. Pundt, G. Hampel, J. Hesse, Mössbauer effect studies on amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9. Zeitschrift fur Physik-Condensed Matter 87, 65–72 (1992)

    Article  ADS  Google Scholar 

  116. G. Rixecker, P. Schaaf, U. Gonser, Crystallization behaviour of amorphous Fe73.5CulNb3Si13.5B9. J. Phys. Condens. Matter 4, 10295–10310 (1992)

    Article  ADS  Google Scholar 

  117. G. Rixecker, P. Schaaf, U. Gonser, Depth selective analysis of phases and spin textures in amorphous, nanocrystalline and crystalline ribbons treated with an excimer laser. J. Phys. D Appl. Phys. 26, 870–879 (1993)

    Article  ADS  Google Scholar 

  118. G. Rixecker, P. Schaaf, U. Gonser, On the interpretation of the Mössbauer spectra of ordered Fe-Si alloys. Physica Status Solidi A- Appl. Res. 139, 309–320 (1993)

    Article  ADS  Google Scholar 

  119. M. Miglierini, Mössbauer-effect study of the hyperfine field distributions in the residual amorphous phase of Fe-Cu-Nb-Si-B nanocrystalline alloys. J. Phys. Condens. Matter 6, 431–1438 (1994)

    Article  Google Scholar 

  120. M. Miglierini, J.M. Greneche, Mössbauer spectrometry of iron-based nanocrystalline alloys: I Fitting model of Mössbauer spectra. J. Phys. Condens. Matter 9, 2303–2319 (1997)

    Article  ADS  Google Scholar 

  121. M. Miglierini, J.M. Greneche, Mössbauer spectrometry of iron-based nanocrystalline alloys: II Topography of hyperfine interactions in Fe(Cu)ZrB alloys. J. Phys. Condens. Matter 9, 2321–2347 (1997)

    Article  ADS  Google Scholar 

  122. J.M. Greneche, Nanocrystalline iron-based alloys investigated by Mössbauer spectroscopy. Hyperfine Interact. 110, 81–91 (1997)

    Article  ADS  Google Scholar 

  123. J.M. Borrego, C.F. Conde, A. Conde, V.A. Peña-Rodríguez, J.M. Greneche, Devitrification process of FeSiBCuNbX nanocrystalline alloys: Mössbauer study of the intergranular phase. J. Phys. Condens. Matter 12, 8089–8100 (2000)

    Article  ADS  Google Scholar 

  124. J.M. Borrego, A. Conde, V.A. Peña-Rodríguez, J.M. Greneche, Mössbauer spectrometry of FINEMET-type nanocrystalline alloys: a revisiting fitting procedure. Hyperfine Interac. 131, 67–82 (2001)

    Article  ADS  Google Scholar 

  125. O. Hupe, M.A. Chuev, H. Bremers, J. Hesse, A.M. Afanas’ev, Magnetic properties of nanostructured ferromagnetic FeCuNbB alloys revealed by a novel method for evaluating complex Mössbauer spectra. J. Phys. Condens. Matter 11, 10545–10556 (1999)

    Article  ADS  Google Scholar 

  126. A. Slawska-Waniewska, A. Roig, E. Molins, J.M. Greneche, R. Zuberek, Surface effects in Fe-based nanocrystalline alloys. J. Appl. Phys. 81, 4652–4654 (1997)

    Article  ADS  Google Scholar 

  127. A. Slawska-Waniewska, K. Brzozka, J.M. Greneche, Surface effects in Fe-Based Nanocrystalline alloys. Acta Physica Polonica 91, 229–232 (1997)

    Google Scholar 

  128. J.M. Greneche, A. Slawska-Waniewska, Interface effects in Fe89Zr7B4 nanocrystalline alloy followed by Mössbauer spectroscopy. Mater. Sci. Eng. A 226–228, 526–530 (1997)

    Google Scholar 

  129. A. Slawska-Waniewska, J.M. Greneche, Magnetic properties of interface in soft magnetic nanocrystalline alloys. Phys. Rev. B 56, R8491–R8494 (1997)

    Article  ADS  Google Scholar 

  130. A. Slawska-Waniewska, Interface magnetism in Fe-based nanocrystalline alloys. J. Phys. IV(8), 11–18 (1998)

    Google Scholar 

  131. J.M. Greneche, A. Slawska-Waniewska, About the interfacial zone in nanocrystalline alloys. J. Magn. Magn. Mater. 215–216, 264–267 (2000)

    Article  Google Scholar 

  132. T. Kemeny, L.K. Varga, L.F. Kiss, J. Balogh, T. Pusztai, L. Toth, I. Toth, Magnetic properties and local structure of Fe-Zr-B-Cu nanocrystalline alloys. Mater. Sci. Forum 269–272, 419–424 (1998)

    Article  Google Scholar 

  133. O. Crisan, Y. Labaye, L. Berger, J.M.D. Coey, J.M. Greneche, Exchange coupling effects in nanocrystalline alloys studied by Monte Carlo simulation. J. Appl. Phys. 91, 8727–8729 (2002)

    Article  ADS  Google Scholar 

  134. O. Crisan, Y. Labaye, L. Berger, J.M. Greneche, Monte Carlo simulation of magnetic properties in nanocrystalline like Systems. J. Phys. Condens. Matter 15, 6331–6344 (2003)

    Article  ADS  Google Scholar 

  135. O. Crisan, J.M. Greneche, Y. Labaye, L. Berger, A.D. Crisan, M. Angelakeris, J.M. Le Breton, N.K. Flevaris, Properties and applications of nanocrystalline alloys from amorphous precursors, in Magnetic Properties of Nanostructured Materials/Monte Carlo Simulation and Experimental Approach for Nanocrystalline Alloys and Core-Shell Nanoparticles, ed. by B. Idzikowski, P. Svec, M. Miglierini, D. Petridis (Kluwer Academic, Dordrecht, 2005), pp. 253–266

    Google Scholar 

  136. N. Randrianantoandro, A. Slawska-Waniewska, J.M. Greneche, Magnetic interactions of nanocrystallized Fe-Cr amorphous alloys. Phys. Rev. B 56, 10797–10800 (1997)

    Article  ADS  Google Scholar 

  137. N. Randrianantoandro, A. Slawska-Waniewska, J.M. Greneche, Magnetic properties of nanocrystallized Fe-Cr amorphous alloys. J. Phys. Condens. Matter 9, 10485–10500 (1997)

    Article  ADS  Google Scholar 

  138. M. Miglierini, I. Skorvanek, J.M. Greneche, Microstructure and hyperfine interactions of the Fe73:5Nb4:5Cr5Cu1B16 nanocrystalline alloys: Mössbauer effect temperature measurements. J. Phys. Condens. Matter 10, 3159–3176 (1998)

    Article  ADS  Google Scholar 

  139. T. Kemeny, J. Balogh, I. Farkas, D. Kaptas, L.F. Kiss, T. Pusztai, L. Toth, I. Vincze, Inter-grain coupling in nanocrystalline soft magnets. J. Phys. Condens. Matter 10, L221–L227 (1998)

    Article  ADS  Google Scholar 

  140. T. Kemeny, D. Kaptas, J. Balogh, L.F. Kiss, T. Pusztai, I. Vincze, Microscopic study of the magnetic coupling in a nanocrystalline soft magnet. J. Phys. Condens. Matter 11, 2841–2847 (1999)

    Article  ADS  Google Scholar 

  141. D. Kaptas, T. Kemeny, J. Balogh, L. Bujdoso, L.F. Kiss, T. Pusztai, I. Vincze, Anomalous magnetic properties of the nano-size residual amorphous phase in nanocrystals. J. Phys. Condens. Matter 11, L179–L185 (1999)

    Article  ADS  Google Scholar 

  142. I. Skorvanek, J. Kovac, J.M. Greneche, Structural and magnetic properties of the intergranular amorphous phase in FeNbB nanocrystalline alloys. J. Phys. Condens. Matter 12, 9085–9093 (2000)

    Article  ADS  Google Scholar 

  143. M. Kopcewicz, Mössbauer effect studies of amorphous metals in magnetic radio-frequency fields. Struct. Chem. 2, 313–342 (1991)

    Google Scholar 

  144. M. Miglierini, M. Kopcewicz, B. Idzikowski, Z.E. Horvath, A. Grabias, I. Skorvanek, P. Duzewski, S. Cs Daroczi, Structure, hyperfine interactions, and magnetic behavior of amorphous and nanocrystalline Fe80M7B12Cu1.(M=Mo, Nb, Ti) alloys J. Appl. Phys. 85, 1014–1025 (1999)

    Article  ADS  Google Scholar 

  145. M. Kopcewicz, A. Grabias, I. Skorvanek, J. Marcin, B. Idzikowski, Mössbauer study of the magnetic properties of nanocrystalline Fe80.5Nb7B12.5 alloy. J. Appl. Phys. 85, 4427–4429 (1999)

    Article  ADS  Google Scholar 

  146. M. Kopcewicz, A. Grabias, I. Skorvánek, Study of the nanocrystalline Fe73.5Nb4.5Cr5Cu1B16 alloy by the radio-frequency-Mössbauer technique. J. Appl. Phys. 83, 935–941 (1998)

    Article  ADS  Google Scholar 

  147. J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1, 2943 (1970)

    Google Scholar 

  148. J.S. Benjamin, Mechanical alloying. Sci. Am. 234, 40–49 (1976)

    Article  ADS  Google Scholar 

  149. J.S. Benjamin, in New materials by mechanical alloying techniques, ed, by E. Arzt, L. Schultz, (DGM Informationgesellschaft, Oberursel, Germany, 1989), pp. 3–18

    Google Scholar 

  150. J.S. Benjamin, Metal Powder Rep. 45, 122–127 (1990)

    Article  Google Scholar 

  151. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    Article  Google Scholar 

  152. H. Gleiter, Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989)

    Article  Google Scholar 

  153. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater 48, 1–29 (2000)

    Article  Google Scholar 

  154. L. Del Bianco, A. Hernando, E. Bonetti, E. Navarro, Grain-boundary structure and magnetic behavior in nanocrystalline ball-milled iron, B. Phys. Rev. 56, 8894–8901 (1997)

    Article  Google Scholar 

  155. L. Del Bianco, C. Ballesteros, J.M. Rojo, A. Hernando, Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe. Phys. Rev. Lett. 81, 4500 (1998)

    Article  ADS  Google Scholar 

  156. E. Bonetti, L. Del Bianco, D. Fiorani, D. Rinaldi, R. Caciuffo, A. Hernando, Disordered magnetism at the grain boundary of pure nanocrystalline iron. Phys. Rev. Lett. 83, 2829 (1999)

    Article  ADS  Google Scholar 

  157. L. Del Bianco, A. Hernando, D. Fiorani, Spin-glass-like behaviour in nanocrystalline Fe, (a). Phys. Stat. Sol. 189, 533 (2002)

    Article  ADS  Google Scholar 

  158. U. Herr, J. Jing, R. Birringer, U. Gonser, H. Gleiter, Investigation of nanocrystalline iron materials by Mössbauer spectroscopy. Appl. Phys. Lett. 50, 472 (1987)

    Article  ADS  Google Scholar 

  159. A. Ślawska-Waniewska, M. Grafoute, J.M. Greneche, Magnetic coupling and spin structure in nanocrystalline iron powders. J. Phys. Condens. Matter 18, 2235–2248 (2006)

    Article  ADS  Google Scholar 

  160. M. Grafouté, Y. Labaye, F. Calvayrac, J.M. Greneche, Structure of grain boundaries in nanostructured powders: a Monte-Carlo/EAM numerical investigation. Eur. J. P B 45, 419–424 (2005)

    Article  ADS  Google Scholar 

  161. F. Ferey, M. Leblanc, R. De Pape, J Pannetier Inorganic Solid Fluorides ed. by P. Hagenmuller (Academic, New York) p. 395

    Google Scholar 

  162. J.M. Greneche, F. Varret, in Mössbauer Spectroscopy Applied to Magnetism and Materials Science, ed. by G. Long, F. Grandjean (Plenum, New York, 1993), p. 161 and references therein

    Google Scholar 

  163. G. Ferey, F. Varret, J.M.D. Coey, Amorphous FeF3 non crystalline magnet with antiferromagnetic interactions. J. Phys. C Solid State Phys. 12, L531 (1979)

    Article  ADS  Google Scholar 

  164. J.M. Greneche, A. Le Bail, M. Leblanc, A. Mosset, F. Varret, J. Galy, G. Ferey, Structural aspects of amorphous fluorides FeF3. J. Phys. C Solid State Phys. 21, 1351–1361 (1988)

    Article  ADS  Google Scholar 

  165. H. Guérault, J.-M. Greneche, Microstructural modelling of iron-based nanostructured fluoride powders prepared by mechanical milling. J. Phys. Condens. Matter 12, 4791–4798 (2000)

    Article  ADS  Google Scholar 

  166. H. Guérault, M. Tamine, J.M. Greneche, Mössbauer study of nanostructured iron fluoride powders. J. Phys. Condens. Matter 12, 9497–9508 (2000)

    Article  ADS  Google Scholar 

  167. H. Guérault, I. Labaye, J.-M. Greneche, Recoilless factors in nanostructured iron-based powders. Hyp. Inter. 136, 57–63 (2001)

    Article  ADS  Google Scholar 

  168. B. Bureau, H. Guérault, G. Silly, J.Y. Buzaré, J.M. Greneche, NMR investigation of mechanically milled nanostructured GaF3 powders. J. Phys. Condens. Matter 11, L423–L431 (1999)

    Article  ADS  Google Scholar 

  169. B. Fongang, I. Labaye, F. Calvayrac, J.M. Greneche, S. Zekeng, Coupled structural and magnetic properties of ferric fluoride nanostructures I: a Metropolis atomistic study. J. Magn. Magn. Mater. 322, 2888–2892 (2010)

    Article  ADS  Google Scholar 

  170. G. Le Caër, E. Bauer-Grosse, A. Pianelli, E. Bouzy, J. Matteazzi, Mechanically driven syntheses of carbides and silicides. Mater. Sci. 25, 4726–4731 (1990)

    Article  ADS  Google Scholar 

  171. G. Le Caer, P. Delcroix, T.D. Shen, B. Malaman, Mössbauer investigation of intermixing during ball milling of Fe0.3Cr0.7 and Fe0.5W0.5 powder mixtures. Phys. Rev. B 54, 12775–12786 (1996)

    Article  ADS  Google Scholar 

  172. R.J. Cooper, N. Randrianantoandro, N. Cowlam, J.M. Greneche, A study of the solid state “amorphisation” reaction in Fe58Ta42 by diffraction and Mössbauer spectrometry. J. Phys. Condens. Matter 9, 1425–1433 (1997)

    Article  ADS  Google Scholar 

  173. N. Randrianantoandro, R.J. Cooper, J.M. Greneche, N. Cowlam, Study of the solid state “amorphisation” reaction in Fe50Re50 by Mössbauer spectrometry and diffraction measurements. J. Phys. Condens. Matter 14, 9713–9724 (2002)

    Article  ADS  Google Scholar 

  174. C. González, G.A. Pérez Alcázar, L.E. Zamora, J.A. Tabares, J.M. Greneche, Magnetic properties of FexMn0.600-xAl0.400, 0.200 ≤ x ≤ 0.600, disordered alloy series. J. Phys. Condens. Matter 14, 6531–6542 (2002)

    Article  ADS  Google Scholar 

  175. H. Moumeni, S. Alleg, J.M. Greneche, Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying. J. Alloys Compd. 386, 12–19 (2005)

    Article  Google Scholar 

  176. S. Azzaza, S. Alleg, H. Moumeni, A.R. Nemamcha, J.L. Rehspringer, J.M. Greneche, Magnetic properties of nanostructured ball-milled Fe and Fe50Co50 alloy. J. Phys. Condens. Matter 18, 7257–7272 (2006)

    Article  ADS  Google Scholar 

  177. H. Moumeni, S. Alleg, J.M. Greneche, Formation of ball-milled Fe-Mo nanostructured powders. J. Alloys Compd. 419, 140–144 (2006)

    Article  Google Scholar 

  178. J.F. Valderruten, G.A. Perez Alcazar, J.M. Greneche, Mössbauer and x-ray study of mechanically alloyed Fe–Ni alloys around the Invar composition. J. Phys. Condens. Matter 20, 485204 (2008)

    Article  Google Scholar 

  179. G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101–1108 (1998)

    Article  ADS  Google Scholar 

  180. P. Druska, U. Steinike, V. Sepelak, Surface structure of mechanically activated and of Mechanosynthesized Zinc Ferrite. J. Solid State Chem. 146, 13–21 (1999)

    Article  ADS  Google Scholar 

  181. V. Sepelak, D. Baabe, K.D. Becker, Mechanically induced cation redistribution and spin canting in nickel ferrite. J. Mater. Synth. Process. 8, 333–337 (2000)

    Article  Google Scholar 

  182. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, J.-M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Matter 12, 7795–7805 (2000)

    Article  ADS  Google Scholar 

  183. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R. Justin Joseyphus, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, J.-M. Greneche, Ferrimagnetic ordering in nanostructured CdFe2O4 spinel. J. Appl. Phys. 90, 527–529 (2001)

    Article  ADS  Google Scholar 

  184. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, H. Guerault, J.-M. Greneche, Structure and magnetic properties of nanocrystalline ferrimagnetic CdFe2O4 spinel. Scripta Mater. 44, 1411–1415 (2001)

    Article  Google Scholar 

  185. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche, Ferrimagnetic ordering in nanostructured zinc ferrite. Scr. Mater. 44, 1407–1410 (2001)

    Article  Google Scholar 

  186. V. Sepelak, M. Menzel, K.D. Becker, F. Krumeich, Mechanochemical reduction of magnesium ferrite. J. Phys. Chem. 44, 1411–1415 (2001)

    Google Scholar 

  187. N. Ponpandian, A. Narayanasamy, C.N. Chinnasamy, N. Sivakumar, J.-M. Greneche, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, Néel temperature enhancement in nanostructured nickel zinc ferrite. Appl. Phys. Lett. 86, 192510 (2005)

    Article  ADS  Google Scholar 

  188. N. Sivakumar, A. Narayanasamy, N. Ponpandian, J.-M. Greneche, K. Shinoda, B. Jeyadevan, K. Tohji, Effect of mechanical milling on the electrical and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4. J. Phys. D Appl. Phys. 39, 4688–4694 (2006)

    Article  ADS  Google Scholar 

  189. N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, J.-M. Greneche, Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102, 013916 (2007)

    Article  ADS  Google Scholar 

  190. V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, J. Litterst, S.J. Campbell, K.D.J. Becker, Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. Phys. Chem. C(111), 5026–5033 (2007)

    Google Scholar 

  191. A. Mahesh Kumar, K.H. Rao, J.M. Greneche, Mössbauer investigation on Ni–Zn nanoferrite with the highest saturation magnetization. J. Appl. Phys. 105, 073919 (2009)

    Article  ADS  Google Scholar 

  192. E.C. Passamani, B.R. Segatto, C. Larica, R. Cohen, J.M. Greneche, Magnetic hysteresis loop shift in NiFe2O4 nanocrystalline powder with large grain boundary fraction. J. Magn. Magn. Mater. 322, 3917–3925 (2010)

    Article  ADS  Google Scholar 

  193. N. Sivakumara, A. Narayanasamya, J.-M. Greneche, R. Murugaraj, Y.S. Lee, Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloy. Compd. 504, 395–402 (2010)

    Article  Google Scholar 

  194. C.N. Chinnasamy, J.M. Greneche, M. Guillot, B. Latha, T. Sakai, C. Vittoria, V.G. Harris, Structural and size dependent magnetic properties of single phase nanostructured gadolinium-iron-garnet under high magnetic field of 32 tesla. J. Appl. Phys. 107, 09A512 (2010)

    Article  Google Scholar 

  195. D. Prabhu, A. Narayanasamy, K. Shinoda, B. Jeyadeven, J.-M. Greneche, K. Chattopadhyay, Grain size effect on the phase transformation temperature of nanostructured CuFe2O4. J. Appl. Phys. 109, 013532 (2011)

    Article  ADS  Google Scholar 

  196. M. Guillot, C.N. Chinnasamy, J.M. Greneche, V.G. Harris, Tuning the cation distribution and magnetic properties of single phase nanocrystalline Dy3Fe5O12 garnet. J. Appl. Phys. 111, 07A517 (2012)

    Article  Google Scholar 

  197. R. Zboril, M. Mashlan, D. Petridis, Iron(III) Oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969–982 (2002)

    Article  Google Scholar 

  198. L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of Nanometric Iron(III) Oxide: a review. Chem. Mater. 23, 3255–3272 (2011)

    Article  Google Scholar 

  199. D.C. Cook, Application of Mössbauer spectroscopy to the study of corrosion. Hyperfine Interact. 153, 61–82 (2004)

    Article  ADS  Google Scholar 

  200. F.E. Wagner, A. Kyek, Mössbauer spectroscopy in archaeology: introduction and experimental considerations. Hyperfine Interact. 154, 5–33 (2004)

    Article  ADS  Google Scholar 

  201. E. Murad, Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 45, 413–430 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This chapter reviews partially studies performed for the last 20 years at the NanoMagnetism and Numeric Modelling Group of the Institut des Molécules et Matériaux du Mans, UMR CNRS 6283 (ex Laboratoire de Physique de l’Etat Condensé UMR CNRS 6287). It is a sincere pleasure to thank first Prof N. Randrianantoandro, Dr N. Yaacoub, Dr Y. Labaye, Prof F. Calvayrac, Dr H. Guérault, Dr M. Grafouté and Dr B. Fongang for their respective significant contributions, and Dr A. Slawska-Waniewska, Dr I. Skorvanek, Prof M. Miglierini, Dr J. Degmova, Dr O. Crisan, Prof. J.M. Borrego, Prof. J. S. Blazquez, Dr D. Peddis, Prof G.A. Perez Alcazar, Dr J.F. Valderruten and Prof J. Restrepo during their respective stays at Le Mans. As mentioned in previous sections, the mutual collaboration with many chemistry groups requires large interactive communication to discuss results in order to optimize (nano)materials and to elaborate more complex (nano)architectures: Dr E. Tronc, Prof J.P. Jolivet, Prof C. Chanéac, Prof S. Ammar (Paris), G. Pourroy and S. Begin (Strasbourg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Greneche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greneche, JM. (2013). The Contribution of 57Fe Mössbauer Spectrometry to Investigate Magnetic Nanomaterials. In: Yoshida, Y., Langouche, G. (eds) Mössbauer Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32220-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32220-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32219-8

  • Online ISBN: 978-3-642-32220-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics