Skip to main content

A Geometric Approach to Gibbs Energy Landscapes and Optimal DNA Codeword Design

  • Conference paper
Book cover DNA Computing and Molecular Programming (DNA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7433))

Included in the following conference series:

Abstract

Finding a large set of single DNA strands that do not crosshybridize to themselves or to their complements (so-called domains in the language of chemical reaction networks (CRNs)) is an important problem in DNA computing, self-assembly, DNA memories and phylogenetic analyses because of their error correction and prevention properties. In prior work, we have provided a theoretical framework to analyze this problem and showed that Codeword Design is NP-complete using any single reasonable metric that approximates the Gibbs energy, thus practically excluding the possibility of finding any procedure to find maximal sets exactly and efficiently. In this framework, codeword design is reduced to finding large sets of strands maximally separated in DNA spaces and, therefore, the size of such sets depends on the geometry of these spaces. Here, we introduce a new general technique to embed them in Euclidean spaces in such a way that oligos with high/low hybridization affinity are mapped to neighboring/remote points in a geometric lattice, respectively. This embedding materializes long-held mataphors about codeword design in terms of sphere packing and leads to designs that are in some cases known to be provable nearly optimal for some oligo sizes. It also leads to upper and lower bounds on estimates of the size of optimal codes of size up to 32 −mers, as well as to infinite families of DNA strand lengths, based on estimates of the kissing (or contact) number for sphere packings in Euclidean spaces. Conversely, we show how solutions to DNA codeword design obtained by experimental or other means can also provide solutions to difficult spherical packing geometric problems via this embedding. Finally, the reduction suggests an analytical tool to arrange the dynamics of strand displacement cascades in CRNs to effect the transformation through bounded Gibbs energy changes, and thus is potentially useful in compilers for wet tube implementation of biomolecular programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobba, K.C., Neel, A.J., Phan, V., Garzon, M.H.: “Reasoning” and “Talking” DNA: Can DNA Understand English? In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 337–349. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.: Characterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in vitro. J. of Natural Computing 5(2), 165–181 (2006)

    Article  MATH  Google Scholar 

  3. Conway, J.H., Sloane, N.J.: Sphere packings, lattices and groups. Comprehensive Studies in Mathematics, vol. 290. Springer (1999)

    Google Scholar 

  4. Deaton, J., Chen, J., Garzon, M., Wood, D.H.: Test Tube Selection of Large Independent Sets of DNA Oligonucleotides, pp. 152–166. World Publishing Co., Singapore (2006) (Volume dedicated to Ned Seeman on occasion of his 60th birthday)

    Google Scholar 

  5. Garzon, M.H., Wong, T.Y.: DNA Chips for Species identification and Biological Phylogenies. J. Natural Computing 10, 375–389 (2011)

    Article  MathSciNet  Google Scholar 

  6. Garzon, M.H., Phan, V., Neel, A.: Optimal Codes for Computing and Self-Assembly. Int. J. of Nanotechnology and Molecular Computing 1, 1–17 (2009)

    Article  Google Scholar 

  7. Garzon, M.H., Yan, H. (eds.): DNA 2007. LNCS, vol. 4848. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  8. Garzon, M.H., Phan, V., Bobba, K.C., Kontham, R.: Sensitivity and Capacity of Microarray Encodings. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 81–95. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Garzon, M.H., Blain, D., Neel, A.J.: Virtual Test Tubes for Biomolecular Computing. J. of Natural Computing 3(4), 461–477 (2004)

    Article  MathSciNet  Google Scholar 

  10. Garzon, M., Neathery, P.I., Deaton, R., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: A New Metric for DNA Computing. In: Koza, J.R., et al. (eds.) Proc. 2nd Annual Genetic Programming Conference, pp. 230–237. Morgan Kaufmann (1997)

    Google Scholar 

  11. Huget, J.M., Bizarro, C.V., Forns, N., Smith, S.B., Bustamante, C., Ritort, F.: Single-molecule derivation of salt-dependent base-pair free energies in DNA. PNAS 107(35), 15431–15436 (2010)

    Article  Google Scholar 

  12. Neel, A., Garzon, M.: Semantic Retrieval in DNA-Based Memories with Gibbs Energy Models. Biotechnology Progress 22(1), 86–90 (2006)

    Article  Google Scholar 

  13. Phan, V., Garzon, M.H.: On Codeword Design in Metric DNA Spaces. J. Natural Computing 8(3), 571–588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Roman, J.: The Theory of Error-Correcting Codes. Springer, Berlin (1995)

    Google Scholar 

  15. SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95(4), 1460–1465 (1998)

    Article  Google Scholar 

  16. Seeman, N.: DNA in a material world. Nature 421, 427–431 (2003)

    Article  MathSciNet  Google Scholar 

  17. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids Res. 33(15), 4951–4964 (2005)

    Article  Google Scholar 

  18. Qian, L., Winfree, E.: Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garzon, M.H., Bobba, K.C. (2012). A Geometric Approach to Gibbs Energy Landscapes and Optimal DNA Codeword Design. In: Stefanovic, D., Turberfield, A. (eds) DNA Computing and Molecular Programming. DNA 2012. Lecture Notes in Computer Science, vol 7433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32208-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32208-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32207-5

  • Online ISBN: 978-3-642-32208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics