Skip to main content

Synthesizing Minimal Tile Sets for Complex Patterns in the Framework of Patterned DNA Self-Assembly

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7433))

Abstract

Ma and Lombardi (2009) introduce and study the Pattern self-Assembly Tile set Synthesis (PATS) problem. In particular they show that the optimization version of the PATS problem is NP-hard. However, their NP-hardness proof turns out to be incorrect. Our main result is to give a correct NP-hardness proof via a reduction from the 3SAT. By definition, the PATS problem assumes that the assembly of a pattern starts always from an “L”-shaped seed structure, fixing the borders of the pattern. In this context, we study the assembly complexity of various pattern families and we show how to construct families of patterns which require a non-constant number of tiles to be assembled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for self-assembled squares. In: STOC 2001: Proc. 32nd Annual ACM Symp. on Theory of Computing (2001)

    Google Scholar 

  2. Czeizler, E., Lempiäinen, T., Orponen, P.: A design framework for carbon nanotube circuits affixed on DNA origami tiles. In: Proc. FNANO 2011 (2011) (Poster)

    Google Scholar 

  3. Douglas, S., Bachelet, I., Church, G.: A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science 335(6070) (2012)

    Google Scholar 

  4. Göös, M., Orponen, P.: Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 71–82. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Kuzyk, A., Laitinen, K., Törmä, P.: DNA origami as a nanoscale template for protein assembly. Nanotechnology 20(23) (2009)

    Google Scholar 

  6. Lempiäinen, T., Czeizler, E., Orponen, P.: Synthesizing Small and Reliable Tile Sets for Patterned DNA Self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 145–159. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNAorigami arrays. Angew. Chem. Int. Ed. 50(1) (2011)

    Google Scholar 

  8. Lund, K., et al.: Molecular robots guided by prescriptive landscapes. Nature 465 (2010)

    Google Scholar 

  9. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans. on Computer-Aided Design of Integrated Circuits 27 (2008)

    Google Scholar 

  10. Ma, X., Lombardi, F.: On the computational complexity of tile set synthesis for DNA self-assembly. IEEE Trans. Circuits and Systems II: Express Briefs 56 (2009)

    Google Scholar 

  11. Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-Dimensional Staged Self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 100–114. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Maune, H.T., Han, S., Barish, R.D., Bockrath, M., Rothemund, P.W.K., Winfree, E.: Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotechnology 5 (2010)

    Google Scholar 

  13. Modi, S., Bhatia, D., Simmel, F.C., Krishnan, Y.: Structural DNA Nanotechnology: From bases to bricks, from structure to function. J. Phys. Chem. Lett. 1 (2010)

    Google Scholar 

  14. Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., Sugiyama, H.: Programmed twodimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5(1) (2011)

    Google Scholar 

  15. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440 (2006)

    Google Scholar 

  16. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC 2000: Proc. 32nd Annual ACM Symp. on Theory of Computing (2000)

    Google Scholar 

  17. Seki, S.: Combinatorial optimizations in pattern assembly (manuscript)

    Google Scholar 

  18. Schulman, R., Winfree, E.: Synthesis of Crystals with a Programmable Barrier to Nucleation. Proc. Nat. Ac. Sci. 104 (2007)

    Google Scholar 

  19. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Nat. Ac. Sci. 109 (2012)

    Google Scholar 

  20. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conducive nanowires. Science 301 (2003)

    Google Scholar 

  21. Zhao, Z., Yan, H., Liu, Y.: A route to scale up DNA origami using DNA tiles as folding staples. Angw. Chem. Int. Ed. 49(8) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czeizler, E., Popa, A. (2012). Synthesizing Minimal Tile Sets for Complex Patterns in the Framework of Patterned DNA Self-Assembly. In: Stefanovic, D., Turberfield, A. (eds) DNA Computing and Molecular Programming. DNA 2012. Lecture Notes in Computer Science, vol 7433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32208-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32208-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32207-5

  • Online ISBN: 978-3-642-32208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics