Skip to main content

Camera Model Identification Based on the Characteristic of CFA and Interpolation

  • Conference paper
Digital Forensics and Watermarking (IWDW 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7128))

Included in the following conference series:

Abstract

In this paper, we propose a camera-model classification method based on characteristics of color filter array (CFA) and interpolation. As CFA patterns and interpolation algorithms are different among different camera models, the artifacts introduced by CFA and interpolation can reflect model-specific to some extent. To capture the artifacts, we design a 69-D feature set and perform camera-model classification. Images from seven camera models in the Dresden Image Database are chosen as our experiment database. Experiment results show that in seven models detection, our method can do the classification with high detection accuracy from 98.39% to 99.88%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Security 1(2), 205–214 (2006)

    Article  Google Scholar 

  2. Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Security Forensics 3(1), 74–90 (2008)

    Article  Google Scholar 

  3. Li, C.-T.: Source Camera Identification Using Enhanced Sensor Pattern Noise. IEEE Trans. Inf. Forensics Security 5(2), 280–287 (2010)

    Article  Google Scholar 

  4. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: Proc. Int. Conf. Image Processing, vol. 1, pp. 709–712 (2004)

    Google Scholar 

  5. Choi, K.S., Lam, E.Y., Wong, K.Y.: Automatic source identification using the intrinsic lens radial distortion. Opt. Express 14(24), 11551–11565 (2006)

    Article  Google Scholar 

  6. Bayram, S., Sencar, H.T., Memon, N.: Improvements on source camera-model identification based on CFA interpolation. In: Proc. Working Group 11.9 Int. Conf. Digital Forensics, FL (2006)

    Google Scholar 

  7. Swaminathan, A., Wu, M., Liu, K.J.R.: Non-intrusive component forensics of visual sensors using output images. IEEE Trans. Inf. Forensics Security 2(1), 91–106 (2007)

    Article  Google Scholar 

  8. Cao, H., Kot, A.C.: Accurate detection of demosaicing regularity for digital image forensics. IEEE Transactions on Information Forensics and Security 4(4), 899–910 (2009)

    Article  Google Scholar 

  9. Kirchner, M.: Efficient Estimation of CFA Pattern Configuration in Digital Camera Images. In: Media Forensics and Security II. Proc. SPIE, vol. 754110 (2010)

    Google Scholar 

  10. Dirik, E., Sencar, H.T., Memon, N.: Source camera identification based on sensor dust characteristics. In: Proc. Signal Processing Applications Public Security Forensics, April 11–13, pp. 1–6 (2007)

    Google Scholar 

  11. Celiktutan, O., Sankur, B., Avcibas, I.: Blind identification of source cell-phone model. IEEE Trans. Inf. Forensics Security 3(3), 553–566 (2008)

    Article  Google Scholar 

  12. Holst, G.C.: CCD Arrays, Cameras, and Displays, 2nd edn. JCD & SPIE, Winter Park, FL, and Bellingham (1998)

    Google Scholar 

  13. Janesick, J.R.: Scientific Charge-Coupled Devices, vol. PM83. SPIE, Bellingham (2001)

    Book  Google Scholar 

  14. Dark frame subtraction, Qimage Help, http://www.ddisoftware.com/qimage/qimagehlp/dark.htm

  15. Lukac, R., Plataniotis, K.N.: Color filter arrays: Design and performance analysis. IEEE Transactions on Consumer Electronics 51, 1260–1267 (2005)

    Article  Google Scholar 

  16. Dirik, A.E., Memon, N.: Image tamper detection based on demosaicing artifacts. In: ICIP, Cairo, Egypt, vol. (09), pp. 429–432 (November 2009)

    Google Scholar 

  17. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  18. Gunturk, B.K., Goltzbach, J., Altunbasak, Y., Schafer, R.W., Mersereau, R.M.: Demosaicking: Color filter array interpolation. IEEE Signal Process. Mag. 22, 44–54 (2005)

    Article  Google Scholar 

  19. Ho, J.S., Au, O.C., Zhou, J., Guo, Y.: Inter-channel demosaicking traces for digital image forensics. In: ICM 2010, pp. 1475–1480 (2010)

    Google Scholar 

  20. Xu, G., Gao, S., Shi, Y.Q., Hu, R., Su, W.: Camera-Model Identification Using Markovian Transition Probability Matrix. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds.) IWDW 2009. LNCS, vol. 5703, pp. 294–307. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Gloe, T., Böhme, R.: The ’Dresden Image Database’ for benchmarking digital image forensics. In: Proceedings of SAC, pp. 1584–1590 (2010)

    Google Scholar 

  22. Magiera, P., Löndahl, C.: ROF Denoising Algorithm (2008), http://www.mathworks.com/matlabcentral/fileexchange/22410-rof-denoising-algorithm/content/ROFdenoise.m

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, S., Xu, G., Hu, RM. (2012). Camera Model Identification Based on the Characteristic of CFA and Interpolation. In: Shi, Y.Q., Kim, HJ., Perez-Gonzalez, F. (eds) Digital Forensics and Watermarking. IWDW 2011. Lecture Notes in Computer Science, vol 7128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32205-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32205-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32204-4

  • Online ISBN: 978-3-642-32205-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics