Skip to main content

Microdevice with Half-Ring Shaped GMR Sensors for Magnetic Bead Manipulation and Detection

  • Chapter
Advancement in Sensing Technology

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 1))

Abstract

Micro and nanosized superparamagnetic beads (MBs) have been used in several biomedical applications due to their comparable size to biomolecules and their ability to respond to external magnetic fields. The stray fields of magnetized MBs can be detected by a magnetic sensor, which is utilized for quantification of target biomolecules present in immunoassays when MBs are used as biomolecular labels.

In this chapter, we describe the design, fabrication and testing of a microdevice for manipulating, trapping and detecting MBs. Manipulation and trapping is accomplished with a microstructure comprising conducting rings to produce magnetic field gradients, which exert a force on MBs. Controlling the movement of MBs paves the way for their rapid detection, since the beads can be attracted and transported towards a sensing site. In order to ensure that the majority of the MBs trapped at the sensing site are detected, we designed a spin valve type giant magnetoresistance (GMR) sensor with half-ring geometry. Analytical and numerical analysis leading towards the fabrication of the microstructure and the half-ring GMR sensor are presented. Full characterization of a single half-ring sensing element showed a DC magnetoresistance of 5.9 %, a small signal AC sensitivity of 0.53 mV/mT and a noise level of 6 \(nV/\surd\)Hz. An analytical model backed up by experimental results is presented to characterize the behavior of MBs in solution. Experimental results showed that the half-ring GMR sensor detected the presence of 2 μm MBs, thus indicating the feasibility of integrating an MB manipulation microstructure with half-ring GMR sensors to optimize the active sensing site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, C.C., Curtis, A.S.G.: Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics 36, R198–R206 (2003)

    Article  Google Scholar 

  2. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  Google Scholar 

  3. Pankhurst, Q.A., Connoly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 36, R167–R181 (2003)

    Google Scholar 

  4. Earhart, C.M., Nguyen, E.M., Wilson, R.J., Wang, A.Y., Wang, S.X.: Designs of a Microfabricated Magnetic Sifter. IEEE Transactions on Magnetics 45, 4884–4887 (2009)

    Article  Google Scholar 

  5. Haun, J.B., Yoon, T.J., Hakho, L., Weissleder, R.: Magnetic nanoparticle biosensors. WIREs Nanomedicine and Nanobiotechnology 2, 291–304 (2010)

    Article  Google Scholar 

  6. Heer, R., Eggeling, M., Schotter, J., Nohammer, C., Pichler, R., Mansfeld, M., Bruckl, H.: Acceleration of incubation processes in DNA bio chips by magnetic particles. Journal of Magnetism and Magnetic Materials 311, 244–248 (2007)

    Article  Google Scholar 

  7. Baier, T., Mohanty, S., Drese, K.S., Rampf, F., Kim, J., Schonfeld, F.: Modelling immunomagnetic cell capture in CFD. Microfluid Nanofluid 7, 205–216 (2009)

    Article  Google Scholar 

  8. Lim, Y.C., Kouzani, A.Z., Duan, W.: Lab-on-a-chip: a component view. Microsystems Technologies 16, 1995–2015 (2010)

    Article  Google Scholar 

  9. Yeo, L.Y., Chang, H.C., Chan, P.P.Y., Friend, J.R.: Microfluidic Devices for Bioapplications. Biomicrofluidics 7, 12–48 (2011)

    Google Scholar 

  10. Gervais, L., de Rooji, N., Delamarche, E.: Microfluidic Chips for Point-of-Care Immunodiagnostics. Advanced Materials 23, H151–H176 (2011)

    Google Scholar 

  11. Pamme, N.: Magnetism and Microfluidics. Lab Chip 6, 24–38 (2006)

    Article  Google Scholar 

  12. Liu, C., Stakenborg, T., Peeters, S., Lagae, L.: Cell manipulation with magnetic particles toward microfluidic cytometry. Journal of Applied Physics 105, 102014 (2009)

    Article  Google Scholar 

  13. Fulcrand, R., Jugieu, D., Escriba, C., Bancaud, A., Bourrier, D., Boukabache, A., Gue, A.M.: Development of a flexible microfluidic system integrating micro-actuators for trapping biological species. Journal of Micromechanics and Microengineering 19, 105019 (2009)

    Article  Google Scholar 

  14. Conroy, R.S., Zabow, G., Moreland, J., Koretsky, A.P.: Controlled transport of magnetic particles using soft magnetic patterns. Applied Physics Letters 93, 203901 (2008)

    Article  Google Scholar 

  15. Koschwanez, J.H., Carlson, R.H., Meldrum, D.R.: Easily fabricated magnetic traps for single-cell applications. Review of Scientific Instruments 78, 044301 (2007)

    Article  Google Scholar 

  16. Bu, M., Christensen, T.B., Smistrup, K., Wolff, A., Hansen, M.F.: Characterization of a microfluidic magnetic bead separator for high-throughput applications. Sensors and Actuators A 145-146, 430–436 (2008)

    Article  Google Scholar 

  17. Rida, A., Fernandez, V., Gijs, M.A.M.: Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Applied Physics Letters 83, 2396–2398 (2003)

    Article  Google Scholar 

  18. Chitu, L., Luby, S., Majkova, E., Hrkut, P., Matay, L., Kostic, I., Satka, A.: Assembling of nanoparticle arrays using microelectromagnetic matrix. Superlattices and Microstructures 44, 528–532 (2008)

    Article  Google Scholar 

  19. Freitas, P.P., Ferreira, H.A., Graham, D.L., Clarke, L.A., Amaral, M.D., Martins, V., Fonseca, L., Cabral, J.M.S.: Magnetoresistive DNA Chips. In: Johnson, M. (ed.) Magnetoelectronics, pp. 331–396. Academic, New York (2004)

    Chapter  Google Scholar 

  20. Boer, B.M., Kahlman, J.A.H.M., Jansen, T.P.G.H., Duric, H., Veen, J.: An integrated and sensitive detection platform for magneto-resistive biosensors. Biosensors and Bioelectronics 22, 2366–2370 (2007)

    Article  Google Scholar 

  21. Tamanha, C.R., Mulvaney, S.P., Rife, J.C., Whitman, L.J.: Magnetic labeling, detection and system integration. Biosensors and Bioelectronics 24, 1–13 (2008)

    Article  Google Scholar 

  22. Graham, D.L., Ferreira, H.A., Feliciano, N., Freitas, P.P., Clarke, L.A., Amaral, M.D.: Magnetic field-assisted DNA hybridization and simultaneous detection using micro-sized spin-valve sensors and magnetic nanoparticles. Sensors and Actuators B 107, 936–944 (2005)

    Article  Google Scholar 

  23. Megens, M., Prins, M.: Magnetic biochips: a new option for sensitive diagnostics. Journal of Magnetism and Magnetic Materials 293, 702–708 (2005)

    Article  Google Scholar 

  24. Suh, J.D., Jung, S.D., Chung, M.A.: Spin valve ring sensors for superparamagnetic bead detections. IEEE Transactions on Magnetics 45, 2730–2732 (2009)

    Article  Google Scholar 

  25. Tao, R.: Super-strong magnetorheological fluids. Journal of Physics: Condensed Matter 13, R979–R999 (2001)

    Google Scholar 

  26. Lee, C.H., Lee, D.W., Choi, J.Y., Choi, S.B., Cho, W.O., Yun, H.C.: Tribological Characteristics Modification of Magnetorheological Fluid. Journal of Tribology 133, 031801 (2011)

    Article  Google Scholar 

  27. Gooneratne, C.P., Liang, C., Giouroudi, I., Kosel, J.: A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection. Journal of Applied Physics 109, 07E517 (2011)

    Google Scholar 

  28. Gooneratne, C.P., Liang, C., Useinov, A., Giouroudi, I., Kosel, J.: A half-ring GMR sensor for detection of magnetic beads immobilized on a circular micro-trap. In: Proceedings of the 5th International Conference on Sensing Technology 2011, vol. 9, pp. 106–111. IEEE (2011), doi:10.1109/ICSensT.2011.6136942, ISBN 978-1-4577-0168-9

    Google Scholar 

  29. Tripathy, D., Adeyeye, A.O., Shannigrahi, S.: Effect of spacer layer thickness on the magnetic and magnetotransport properties of Fe3O4/Cu/Ni80Fe20 spin valve structures. Physical Review B 75, 012403 (2007)

    Article  Google Scholar 

  30. Wang, S.X., Li, G.: Advances in Giant Magnetoresistance Biosensors with Magnetic Nanoparticle Tags: Review and Outlook. IEEE Transactions on Magnetics 44, 1687–1702 (2008)

    Article  Google Scholar 

  31. Yamada, S., Gooneratne, C.P., Iwahara, M., Kakikawa, M.: Detection and Estimation of Low-Concentration Magnetic Fluid Inside Body by a Needle-Type GMR Sensor. IEEE Transactions on Magnetics 44, 4541–4544 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gooneratne, C.P., Giouroudi, I., Kosel, J. (2013). Microdevice with Half-Ring Shaped GMR Sensors for Magnetic Bead Manipulation and Detection. In: Mukhopadhyay, S., Jayasundera, K., Fuchs, A. (eds) Advancement in Sensing Technology. Smart Sensors, Measurement and Instrumentation, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32180-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32180-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32179-5

  • Online ISBN: 978-3-642-32180-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics