Skip to main content

Experimental Research Platform for Structural Health Monitoring

  • Chapter
Advancement in Sensing Technology

Abstract

Non-destructive structural testing aims to characterize material and detect failures without damaging the structure in any way. Detection historically meant some form of a visual assessment combined with auditory tests carried out by trained personnel. Inspectors well prepared to identify various types of deterioration would conduct periodic evaluations comparing the current state with previous reports. The problem with this was not only that most likely damage locations had to be known a priori and had to be readily accessible but also that the whole approach had a strong subjective aspect to it. This latter issue was somewhat alleviated with the introduction of more advanced inspection methods and instruments, such as X-ray and ultrasonic techniques, but the main problem of inspections being cumbersome, slow, and superficial still remained untouched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborn, T.M., Shuchman, R., Sutter, L.L., Brooks, C.N., Harris, D.K., Burns, J.W., Endsley, K.A., Evans, D.C., Vaghefi, K., Oats, R.C.: The State-of-the-Practice of Modern Structural Health Monitoring for Bridges: A Comprehensive Review. Technical Report 734, Michigan Tech (2010)

    Google Scholar 

  2. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology 17(12), R175–R195 (2006)

    Google Scholar 

  3. Chang, P.C., Chi Liu, S.: Recent Research in Nondestructive Evaluation of Civil Infrastructures. Journal of Materials in Civil Engineering 15(3), 298 (2003)

    Article  Google Scholar 

  4. Chen, R., Fernando, G.F., Butler, T., Badcock, R.A.: A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler. Measurement Science and Technology 15(8), 1490–1495 (2004)

    Article  Google Scholar 

  5. James, M.: Conrad. A survey of energy harvesting sources for embedded systems. In: IEEE SoutheastCon 2008, pp. 442–447. IEEE (April 2008)

    Google Scholar 

  6. Dondi, D., Pompeo, A.D., Tenti, C., Simuni, T.: Shimmer: a Wireless Harvesting Embedded System for Active Ultrasonic Structural Health Monitoring. Energy, 2325–2328 (2010)

    Google Scholar 

  7. Galchev, T., McCullagh, J., Peterson, R.L., Najafi, K.: Harvesting traffic-induced bridge vibrations. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 1661–1664 (2011)

    Google Scholar 

  8. Gorman, M.R.: Plate wave acoustic emission. The Journal of the Acoustical Society of America 90(1), 358 (1991)

    Article  Google Scholar 

  9. Harms, T., Sedigh, S., Bastianini, F.: Structural Health Monitoring of Bridges Using Wireless Sensor Networks. IEEE Instrumentation & Measurement Magazine 13(6), 14–18 (2010)

    Article  Google Scholar 

  10. Healy, M., Newe, T., Lewis, E.: Wireless Sensor Node hardware: A review. In: 2008 IEEE Sensors, pp. 621–624. IEEE (October 2008)

    Google Scholar 

  11. Ledeczi, A., Hay, T., Volgyesi, P., Hay, D.R., Nadas, A., Jayaraman, S.: Wireless Acoustic Emission Sensor Network for Structural Monitoring. IEEE Sensors Journal 9(11), 1370–1377 (2009)

    Article  Google Scholar 

  12. Lynch, J.P.: A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest 38(2), 91–128 (2006)

    Article  Google Scholar 

  13. Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer, E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B., Wait, J.R.: Design and performance validation of a wireless sensing unit for structural monitoring applications. Structural Engineering and Mechanics 17(3-4), 393–408 (2004)

    Google Scholar 

  14. Mascareñas, D., Flynn, E., Todd, M., San, C.: Wireless Sensor Technologies for Monitoring Civil Structures. Analysis, 16–20 (April 2008)

    Google Scholar 

  15. Moghe, R., Lambert, F., Divan, D.: A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications. In: 2009 IEEE Energy Conversion Congress and Exposition, pp. 3550–3557. IEEE (2009)

    Google Scholar 

  16. Los Alamos National. A Review of Structural Health Monitoring Literature: 1996 - 2001. Structural Health Monitoring, LA-13976-M(LA-13976-MS):1996–2001 (2004)

    Google Scholar 

  17. Pedchenko, A.V., Hoke, J.W., Barth, E.J.: A Control Approach for Broadening the Operating Frequency Range of a Bridge Vibration Energy Harvester. In: 2011 Dynamic Systems and Control Conference (2011)

    Google Scholar 

  18. Qi, G., Barhorst, A., Hashemi, J., Kamala, G.: Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites. Composites Science and Technology 57(4), 389–403 (1997)

    Article  Google Scholar 

  19. Rippert, L., Wevers, M., Van Huffel, S.: Optical and acoustic damage detection in laminated CFRP composite materials. Composites Science and Technology 60(14), 2713–2724 (2000)

    Article  Google Scholar 

  20. Russell-Minda, E., Jutai, J., Speechley, M., Bradley, K., Chudyk, A., Petrella, R.: Sensors and Technologies for Structural Health Monitoring: A Review. Journal of Diabetes Science and Technology 3(6), 1–14 (2011)

    Google Scholar 

  21. Sakamoto, W.K., Marin-Franch, P., Das-Gupta, D.K.: Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sensors and Actuators A: Physical 100(2-3), 165–174 (2002)

    Article  Google Scholar 

  22. Scruby, C.B.: An introduction to acoustic emission. Journal of Physics E: Scientific Instruments 20(8), 946–953 (1987)

    Article  Google Scholar 

  23. Shahabadi, A.: Bridge Vibration Studies: Interim Report. Transportation Research, pp. 108–130 (1977)

    Google Scholar 

  24. Williams, C.B., Pavic, A., Crouch, R.S., Woods, R.C.: Feasibility study of vibration-electric generator for bridge vibration sensors. In: IMAC-Proceedings 16th International Modal Analysis Conference, pp. 1111–1117 (1998)

    Google Scholar 

  25. Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., Estrin, D.: A wireless sensor network For structural monitoring. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems - SenSys 2004, p. 13. ACM Press, New York (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Babjak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babjak, B. et al. (2013). Experimental Research Platform for Structural Health Monitoring. In: Mukhopadhyay, S., Jayasundera, K., Fuchs, A. (eds) Advancement in Sensing Technology. Smart Sensors, Measurement and Instrumentation, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32180-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32180-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32179-5

  • Online ISBN: 978-3-642-32180-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics