Skip to main content

Hyperbolic Conservation Laws: An Illustrated Tutorial

  • Chapter
  • First Online:
Modelling and Optimisation of Flows on Networks

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2062))

Abstract

These notes provide an introduction to the theory of hyperbolic systems of conservation laws in one space dimension. The various chapters cover the following topics: (1) Meaning of a conservation equation and definition of weak solutions. (2) Hyperbolic systems. Explicit solutions in the linear, constant coefficients case. Nonlinear effects: loss of regularity and wave interactions. (3) Shock waves: Rankine–Hugoniot equations and admissibility conditions. (4) Genuinely nonlinear and linearly degenerate characteristic fields. Centered rarefaction waves. The general solution of the Riemann problem. Wave interaction estimates. (5) Weak solutions to the Cauchy problem, with initial data having small total variation. Approximations generated by the front-tracking method and by the Glimm scheme. (6) Continuous dependence of solutions w.r.t. the initial data, in the L 1 distance. (7) Characterization of solutions which are limits of front tracking approximations. Uniqueness of entropy-admissible weak solutions. (8) Vanishing viscosity approximations. (9) Extensions and open problems. The survey is concluded with an Appendix, reviewing some basic analytical tools used in the previous sections.Throughout the exposition, technical details are mostly left out. The main goal of these notes is to convey basic ideas, also with the aid of a large number of figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Amadori, L. Gosse, G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162, 327–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Ancona, S. Bianchini, Vanishing viscosity solutions of hyperbolic systems of conservation laws with boundary, in “WASCOM 2005”–13th Conference on Waves and Stability in Continuous Media (World Scientific, Hackensack, 2006), pp. 13–21

    Google Scholar 

  3. F. Ancona, A. Marson, Existence theory by front tracking for general nonlinear hyperbolic systems. Arch. Ration. Mech. Anal. 185, 287–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Ancona, A. Marson, A locally quadratic Glimm functional and sharp convergence rate of the Glimm scheme for nonlinear hyperbolic systems. Arch. Ration. Mech. Anal. 196, 455–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Baiti, H.K. Jenssen, On the front tracking algorithm. J. Math. Anal. Appl. 217, 395–404 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bianchini, On the Riemann problem for non-conservative hyperbolic systems. Arch. Ration. Mech. Anal. 166, 1–26 (2003)

    MathSciNet  MATH  Google Scholar 

  7. S. Bianchini, A. Bressan, Vanishing viscosity solutions to nonlinear hyperbolic systems. Ann. Math. 161, 223–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bressan, Contractive metrics for nonlinear hyperbolic systems. Indiana Univ. J. Math. 37, 409–421 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bressan, Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170, 414–432 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bressan, The unique limit of the Glimm scheme. Arch. Ration. Mech. Anal. 130, 205–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem (Oxford University Press, Oxford, 2000)

    Google Scholar 

  12. A. Bressan, BV solutions to systems of conservation laws by vanishing viscosity, C.I.M.E. course in Cetraro, 2003, in Springer Lecture Notes in Mathematics, vol. 1911, ed. by P. Marcati (Springer-Verlag, Berlin, 2007), pp. 1–78

    Google Scholar 

  13. A. Bressan, A tutorial on the Center Manifold Theorem, C.I.M.E. course in Cetraro, 2003, in Springer Lecture Notes in Mathematics, vol. 1911, ed. by P. Marcati (Springer-Verlag, Berlin, 2007), pp. 327–344

    Google Scholar 

  14. A. Bressan, R.M. Colombo, The semigroup generated by 2 ×2 conservation laws. Arch. Ration. Mech. Anal. 133, 1–75 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bressan, P. Goatin, Oleinik type estimates and uniqueness for n ×n conservation laws. J. Differ. Equat. 156, 26–49 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bressan, P. LeFloch, Uniqueness of weak solutions to hyperbolic systems of conservation laws. Arch. Ration. Mech. Anal. 140, 301–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Bressan, M. Lewicka, A uniqueness condition for hyperbolic systems of conservation laws. Discrete. Cont. Dyn. Syst. 6, 673–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Bressan, A. Marson, Error bounds for a deterministic version of the Glimm scheme. Arch. Ration. Mech. Anal. 142, 155–176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bressan, T. Yang, On the convergence rate of vanishing viscosity approximations. Comm. Pure Appl. Math. 57, 1075–1109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Bressan, T.P. Liu, T. Yang, L 1 stability estimates for n ×n conservation laws. Arch. Ration. Mech. Anal. 149, 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Bressan, G. Crasta, B. Piccoli, Well posedness of the Cauchy problem for n ×n systems of conservation laws. Am. Math. Soc. Mem. 694 (2000)

    Google Scholar 

  22. A. Bressan, K. Jenssen, P. Baiti, An instability of the Godunov scheme. Comm. Pure Appl. Math. 59, 1604–1638 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Cheverry, Systèmes de lois de conservation et stabilité BV [Systems of conservation laws and BV stability]. Mém. Soc. Math. Fr. 75 (1998) (in French)

    Google Scholar 

  24. C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity. J. Differ. Equat. 221, 470–541 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.G. Crandall, The semigroup approach to first order quasilinear equations in several space variables. Isr. J. Math. 12 108–132, (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (Springer, Berlin, 1999)

    Google Scholar 

  28. R.J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differ. Equat. 20, 187–212 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. DiPerna, Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82, 27–70 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Donadello, A. Marson, Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws. Nonlinear Differ. Equat. Appl. 14, 569-592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. L.C. Evans, Partial Differential Equations (American Mathematical Society, Providence, 1998)

    MATH  Google Scholar 

  32. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, Boca Raton, Fl, 1992)

    MATH  Google Scholar 

  33. M. Garavello, B. Piccoli, in Traffic Flow on Networks. Conservation Laws Models (AIMS Series on Applied Mathematics, Springfield, 2006)

    Google Scholar 

  34. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Glimm, P. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws. Am. Math. Soc. Mem. 101 (1970)

    Google Scholar 

  36. J. Goodman, Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Ration. Mech. Anal. 121, 235–265 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Systems of Conservation Laws (Springer, New York, 2002)

    Book  Google Scholar 

  38. H.K. Jenssen, Blowup for systems of conservation laws. SIAM J. Math. Anal. 31, 894–908 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Kruzhkov, First-order quasilinear equations with several space variables. Mat. Sb. 123, 228–255 (1970). English translation in Math. USSR Sb. 10, 217–273 (1970)

    Google Scholar 

  40. P.D. Lax, Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Lewicka, Well-posedness for hyperbolic systems of conservation laws with large BV data. Arch. Ration. Mech. Anal. 173, 415–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. T.-T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems (Wiley, Chichester, 1994)

    MATH  Google Scholar 

  43. M. Lighthill, G. Whitham, On kinematic waves, II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A 229, 317–345 (1955)

    MathSciNet  MATH  Google Scholar 

  44. T.P. Liu, The Riemann problem for general systems of conservation laws. J. Differ. Equat. 18, 218–234 (1975)

    Article  MATH  Google Scholar 

  45. T.P. Liu, The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53, 78–88 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. T.P. Liu, The deterministic version of the Glimm scheme. Comm. Math. Phys. 57, 135–148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  47. T.P. Liu, Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws. Comm. Pure Appl. Math. 30, 767–796 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. T.-P. Liu, T. Yang, L 1 stability of conservation laws with coinciding Hugoniot and characteristic curves. Indiana Univ. Math. J. 48, 237–247 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. T.-P. Liu, T. Yang, L 1 stability of weak solutions for 2 ×2 systems of hyperbolic conservation laws. J. Am. Math. Soc. 12, 729–774 (1999)

    Article  MATH  Google Scholar 

  50. Y. Lu, Hyperbolic Conservation Laws and the Compensated Compactness Method (Chapman & Hall/CRC, Boca Raton, 2003)

    MATH  Google Scholar 

  51. O. Oleinik, Discontinuous solutions of nonlinear differential equations. Am. Math. Soc. Transl. 26, 95–172 (1963)

    MathSciNet  Google Scholar 

  52. B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Göttingen Abh. Math. Cl. 8, 43–65 (1860)

    Google Scholar 

  53. F. Rousset, Viscous approximation of strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35, 492–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Schochet, Sufficient conditions for local existence via Glimm’s scheme for large BV data. J. Differ. Equat. 89, 317–354 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Schochet, The essence of Glimm’s scheme, in Nonlinear Evolutionary Partial Differential Equations, ed. by X. Ding, T.P. Liu (American Mathematical Society/International Press, Providence, RI, 1997), pp. 355–362

    Google Scholar 

  56. D. Serre, Systems of Conservation Laws, vols. 1–2 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  57. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  58. S.H. Yu, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. Arch. Ration. Mech. Anal. 146, 275–370 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. A.I. Volpert, The spaces BV and quasilinear equations. Math. USSR Sbornik 2, 225–267 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bressan .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bressan, A. (2013). Hyperbolic Conservation Laws: An Illustrated Tutorial. In: Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics(), vol 2062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32160-3_2

Download citation

Publish with us

Policies and ethics