Skip to main content

Fault Tolerant High Performance Galois Field Arithmetic Processor

  • Conference paper
  • 1358 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 305))

Abstract

Reliability is an emerging design requirement for finite field processors used in cryptographic systems. However, reliable design of these systems is particularly challenging due to conflicting design requirements, including high performance and low power consumption. In this paper, we propose a novel design technique for reliable and low power Galois field (GF) arithmetic processor. The aim is to tolerate faults in the GF processor during on-line computation at reduced system costs, while maintaining high performance. The reduction in system costs is achieved through multiple parity prediction and comparison considering the trade-offs between performance and complexity. The effectiveness of the proposed technique is then validated using a case study of 163-bit digit serial multipliers using 90nm and 180nm technology nodes highlighting the resulting area, latency and power overheads. We show that up to 40 stuck-at faults can be tolerated during computation with reasonable system area and power costs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mastrovito, E.D.: VLSI Architectures for Computation in Galois Fields. PhD thesis, Linkoping University, Linkoping, Sweden (1991)

    Google Scholar 

  2. Deschamps, J.-P., Imana, J.L., Sutter, G.D.: Hardware implementation of Finite Field Arithmetic. The McGraw-Hill Companies Inc. (2009)

    Google Scholar 

  3. Blake, I., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Kumar, S., Wollinger, T., Paar, C.: Optimum Digit Serial GF(2m) Multipliers for Curve Based Cryptography. IEEE Transactions on Computers 55(10), 1306–1311 (2006)

    Article  Google Scholar 

  5. Orlando, G., Paar, C.: A High-Performance Reconfigurable Elliptic Curve Processor for GF(2m). In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 41–56. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Pradhan, D.K.: Fault-Tolerant Computer System Design, 1st edn. Prentice-Hall, NJ (1996)

    Google Scholar 

  7. Johnson, B.W.: Design and Analysis of Fault Tolerant Digital Systems. Addison-Wesley (1989)

    Google Scholar 

  8. Fenn, S., Gossel, M., Benaissa, M., Taylor, D.: Online Error Detection for Bit-serial Multipliers in GF(2m). Journal of Electronic Testing: Theory and Applications 13, 29–40 (1998)

    Article  Google Scholar 

  9. Mathew, J., Singh, J., Jabir, A.M., Hosseinabady, M., Pradhan, D.K.: Fault Tolerant Bit Parallel Finite Field Multipliers using LDPC Codes. In: Proc. of ISCAS, pp. 1684–1687 (2008)

    Google Scholar 

  10. Gallager, R.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)

    Google Scholar 

  11. Wu, K., Karri, R., Kuznetsov, G., Goessel, M.: Low Cost Concurrent Error Detection for the Advanced Encryption Standard. In: Proceedings of ITC, pp. 1242–1248 (2004)

    Google Scholar 

  12. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error Analysis and Detection Procedures for a Hardware Implementation of the Advanced Encryption Standard. IEEE Trans. on Computers, Special issue on Cryptographic Hardware and Embedded Systems 52(4), 492–505 (2003)

    Google Scholar 

  13. Reyhani-Masoleh, A., Hasan, M.A.: Fault Detection Architectures for Field Multiplication Using Polynomial Bases. IEEE Trans. on Computers 55(9) (September 2006)

    Google Scholar 

  14. Meher, P.K.: On Efficient Implementation of Accumulation in Finite Field Over GF(2m) and Its Applications. IEEE Trans. on Very Large Scale Integration (VLSI) Systems 17(4) (2009)

    Google Scholar 

  15. Reyhani-Masoleh, A., Hasan, M.A.: Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over GF(2m). IEEE Trans. on Computers 53(8) (2004)

    Google Scholar 

  16. Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.: Robust System Design with Built-In Soft Error Resilience. IEEE Computer 38(2), 43–52 (2005)

    Article  Google Scholar 

  17. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Eliminating Errors in Cryptographic Computations. Journal of Cryptology 14, 1–119 (2001)

    Article  MathSciNet  Google Scholar 

  18. Song, L., Parhi, K.K.: Low Energy Digit-Serial/Parallel Fnite Feld Multipliers. Journal of VLSI Signal Processing 19(2), 149–166 (1998)

    Article  Google Scholar 

  19. Gaubatz, G., Sunar, B.: Robust Fnite Feld Arithmetic for Fault Tolerant Public-key Cryptography. In: 2nd Workshop on Fault Tolerance and Diagnosis in Cryptography (FTDC), pp. 1–12 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narayanan, V.K., Shafik, R.A., Mathew, J., Pradhan, D.K. (2012). Fault Tolerant High Performance Galois Field Arithmetic Processor. In: Mathew, J., Patra, P., Pradhan, D.K., Kuttyamma, A.J. (eds) Eco-friendly Computing and Communication Systems. ICECCS 2012. Communications in Computer and Information Science, vol 305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32112-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32112-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32111-5

  • Online ISBN: 978-3-642-32112-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics