Skip to main content

A Novel Algorithm for Hub Protein Identification in Prokaryotic Proteome Using Di-Peptide Composition and Hydrophobicity Ratio

  • Conference paper
Eco-friendly Computing and Communication Systems (ICECCS 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 305))

  • 1350 Accesses

Abstract

It is widely hypothesized that the information for determining protein hubness is found in their amino acid sequence patterns and features. This has moved us to relook at this problem. In this study, we propose a novel algorithm for identifying hub proteins which relies on the use of dipeptide compositional information and hydrophobicity ratio. In order to discern the most potential and protuberant features, two feature selection techniques, CFS (Correlation-based Feature Selection) and ReliefF algorithms were applied, which are widely used in data preprocessing for machine learning problems. Overall accuracy and time taken for processing the models were compared using a neural network classifier RBF Network and an ensemble classifier Bagging. Our proposed models led to successful prediction of hub proteins from amino acid sequence information with 92.94% and 92.10 % accuracy for RBF network and bagging respectively in case of CFS algorithm and 94.15 % and 90.89 % accuracy for RBF network and bagging respectively in case of ReliefF algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  2. Latha, A.B., Nair, A.S., Sivasankaran, A., Dhar, P.K.: Identification of hub proteins from sequence. Bioinformation 7 (2011)

    Google Scholar 

  3. Tun, K., Rao, R.K., Samavedham, L., Tanaka, H., Dhar, P.K.: Rich can get poor: conversion of hub to non-hub proteins. Systems and Synthetic Biology 2, 75–82 (2009)

    Article  Google Scholar 

  4. He, X., Zhang, J.: Why do hubs tend to be essential in protein networks? PLoS Genetics 2, e88 (2006)

    Google Scholar 

  5. Patil, A., Kinoshita, K., Nakamura, H.: Hub promiscuity in protein-protein interaction networks. International Journal of Molecular Sciences 11, 1930–1943 (2006)

    Article  Google Scholar 

  6. Hsing, M., Byler, K.G., Cherkasov, A.: P The use of Gene Ontology terms for predicting highly-connected “hub” nodes in protein-protein interaction networks. BMC Systems Biology 2, 80 (2006)

    Article  Google Scholar 

  7. Srihari, S.: Detecting hubs and quasi cliques in scale-free networks. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  8. Dandekar, T., Snel, B., Huynen, M., Bork, P.: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998)

    Article  Google Scholar 

  9. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901 (1999)

    Article  Google Scholar 

  10. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999)

    Article  Google Scholar 

  11. Enright, J., Iliopoulos, I., Kyrpides, N.C.,, C.: Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999)

    Google Scholar 

  12. Ge, H., Liu, Z., Church, G.M., Vidal, M.: Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat. Genet. 29, 482–486 (2001)

    Article  Google Scholar 

  13. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288 (1999)

    Article  Google Scholar 

  14. Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., et al.: IntAct–open source resource for molecular interaction data. Nucleic Acids Research 35, D561-D565 (2007), http://www.ebi.ac.uk/intact/main.xhtml

  15. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., et al.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Research 32, D115–D119 (2004), http://www.uniprot.org

  16. Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)

    Article  Google Scholar 

  17. Garg, A., Gupta, D.: VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9, 62 (2008)

    Article  Google Scholar 

  18. Young, L., Jernigan, B.L., Covell, D.G.: A role for surface hydrophobicity in protein-protein recognition. Protein Sci. 3, 717–729 (1994)

    Article  Google Scholar 

  19. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18, 2163–2170 (1990)

    Article  Google Scholar 

  20. http://web.expasy.org/protscale/pscale/Hphob.Doolittle.html

  21. Goli, B., Aswathi, B.L., Nair, A.S.: A Novel Algorithm for Prediction of Protein Coding DNA from Non-coding DNA in Microbial Genomes Using Genomic Composition and Dinucleotide Compositional Skew. In: Meghanathan, N., Chaki, N., Nagamalai, D. (eds.) CCSIT 2012, Part II. LNICST, vol. 85, pp. 535–542. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Hall, M., Holmes, G.: Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Trans. Knowl. Data Eng. 15, 1–16 (2003)

    Article  Google Scholar 

  23. Wang, C., Ding, C., Meraz, R.F., Holbrook, S.R.: PSoL.: A positive sample only learning algorithm for finding non-coding RNA genes. Bioinformatics 22, 2590–2596 (2006)

    Article  Google Scholar 

  24. Liu, H., Yu, L.: Towards integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17(3), 1–12 (2005)

    Article  MATH  Google Scholar 

  25. Hall, M.A.: Correlation based feature selection for machine learning. Doctoral dissertation, The University of Waikato, Dept. of Comp. Sci. (1999)

    Google Scholar 

  26. Marko, R.S., Igor, K.: Theoretical and empirical analysis of relief and rreliefF. Machine Learning Journal 53, 23–69 (2003)

    Article  MATH  Google Scholar 

  27. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning, pp. 249–256. Morgan Kaufmann Publishers Inc. (1992)

    Google Scholar 

  28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  29. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University (1974)

    Google Scholar 

  30. Parker, D.B.: Learning-logic. Technical report, TR-47, Sloan School of Management. MIT, Cambridge, Mass (1985)

    Google Scholar 

  31. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error-propagation in Parallel distributed processing: Explorations in the Microstructure of Cognition, vol. I. Bradford Books, Cambridge (1986)

    Google Scholar 

  32. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:Bagging, boosting, and variants. Machine Learning 36(1/2), 105–139 (1999)

    Article  Google Scholar 

  33. Breiman, L.: Bagging predictors. Machine learning 24(2), 123–140 (1996a)

    MathSciNet  MATH  Google Scholar 

  34. Achuthsankar, S.N., Sreenadhan, S.P.: An improved digital _ltering technique using nucleotide frequency indicators for locating exons. Journal of the Computer Society of India 36, 60–66 (2006)

    Google Scholar 

  35. Cherian, B.S., Nair, A.S.: Protein location prediction using atomic composition and global features of the amino acid sequence. Biochemical and Biophysical Research Communications 391, 1670–1674 (2010)

    Article  Google Scholar 

  36. Namboodiri, S., Verma, C., Dhar, P.K., Giuliani, A., Nair, A.-S.S.: Sequence signatures of allosteric proteins towards rational design. Systems and Synthetic Biology 4, 271–280 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

B.L., A., Goli, B., Govindarajan, R., Nair, A.S. (2012). A Novel Algorithm for Hub Protein Identification in Prokaryotic Proteome Using Di-Peptide Composition and Hydrophobicity Ratio. In: Mathew, J., Patra, P., Pradhan, D.K., Kuttyamma, A.J. (eds) Eco-friendly Computing and Communication Systems. ICECCS 2012. Communications in Computer and Information Science, vol 305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32112-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32112-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32111-5

  • Online ISBN: 978-3-642-32112-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics