Skip to main content

Application of non-orthogonal bases in the theory of light scattering by spheroidal particles

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

The theory of light scattering by single particles and their ensembles has important applications in various areas of science and technology, e.g. in optics of the atmosphere, radio physics, astrophysics and biophysics as well as in environmental monitoring, analysis of the Earth’s climate changes and so on. So far in such applications one used to employ the Mie theory that provides the solution to the light scattering problem for a sphere (van de Hulst, 1957; Bohren and Huffman, 1983). In this solution the fields are represented by their expansions in terms of vector spherical wave functions that form an orthogonal basis for the problem including the boundary conditions on the spherical particle surface. As a result the Mie solution is rather simple and allows one to extensively apply numerical modelling due to the ease of calculations of the spherical wave functions in a very wide range of parameter values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrejewski, W., 1953: Die Beugung electromagnetischerWellen an der leitenden Kreissscheibe und an der kreisformigen Offnung im leitenden ebenen Schirm, Z. angew. Phys., 5, 178–186.

    Google Scholar 

  • Asano, S., and G. Yamamoto, 1975: Light scattering by spheroidal particle, Appl. Opt., 14, 29–49.

    Google Scholar 

  • Barber, P. W., and S. C. Hill, 1990: Light Scattering by Particles: Computational Methods, Singapore: World Scientific.

    Google Scholar 

  • Barber, P. W., and C. Yeh, 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, Appl. Opt., 14, 2864–2872.

    Article  Google Scholar 

  • Bohren, C., and D. Huffman, 1983: Absorption and Scattering of Light by Small Particles, New York: John Wiley & Sons.

    Google Scholar 

  • Colton, D., and R. Kress, 1984: Integral Methods in Scattering Theory, New York: John Wiley & Sons.

    Google Scholar 

  • Farafonov, V. G., 1983: Diffraction of a plane electromagnetic wave by a dielectric spheroid, (Sov.) Diff. Equat., 19, 1765–1777.

    Google Scholar 

  • Farafonov, V. G., 1984: Scattering of electromagnetic waves by a perfectly conducting spheroid, (Sov.) Radiotech. Electron., 29, 1857–1865.

    Google Scholar 

  • Farafonov, V. G., 2001: New recursive solution of the problem of scattering of electromagnetic radiation by multilayered spheroidal particles, Opt. Spectr., 90, 743–752.

    Article  Google Scholar 

  • Farafonov, V. G., 2011: A unified approach using spheroidal functions for solving the problem of light scattering by a axisymmetric particles, J. Math. Sci., 175, 698–723.

    Article  Google Scholar 

  • Farafonov, V. G., and V. B. Il’in, 2006: Single light scattering: computational methods, In Light Scattering Reviews, A. A. Kokhanovsky (ed.), Berlin: Springer-Praxis, pp. 125– 177.

    Google Scholar 

  • Farafonov, V. G., and S. Y. Slavyanov, 1980: Diffraction of a plane wave by a perfectly conducting spheroid, (Sov.) Radiotech. Electron., 25, 2056–2065.

    Google Scholar 

  • Farafonov, V. G., and N. V. Voshchinnikov, 2012: Light scattering by a multilayered spheroidal particle, Appl. Opt., 51, 1586–1597.

    Article  Google Scholar 

  • Farafonov, V. G., N. V. Voshchinnikov, and V. V. Somsikov, 1996: Light scattering by a core-mantle spheroidal particle, Appl. Opt., 35, 5412–5426.

    Article  Google Scholar 

  • Farafonov, V. G., V. B. Il‘in, and A. A. Vinokurov, 2007: On use of the field expansions in terms of spheroidal functions, J. Quant. Spectr. Rad. Transfer, 106, 33–41.

    Google Scholar 

  • Farafonov, V. G., V. B. Il‘in, and A. A. Vinokurov, 2010: Near- and far-field light scattering by nonspherical particles: applicability of methods that involve a spherical basis, Opt. Spectr., 109, 432–443.

    Google Scholar 

  • Flammer, C., 1953: The vector wave function solution of electromagnetic wave by circular discs and apertures. II. The diffraction problems, J. Appl. Phys., 24, 1224–1231.

    Google Scholar 

  • Flammer, C., 1957: Spheroidal Wave Functions, Stanford: Stanford University Press.

    Google Scholar 

  • Hovenier, J. W., K. Lumme, M. I. Mishchenko, N. V. Voshchinnikov, D. W. Mackowski, and J. Rahola, 1996: Computations of scattering matrices of four types of nonspherical particles using diverse methods, J. Quant. Spectr. Rad. Transfer, 55, 695–205.

    Article  Google Scholar 

  • van de Hulst, H. C., 1957: Light Scattering by Small Particles, New York: John Wiley & Sons.

    Google Scholar 

  • Il’in, V.B., N. V. Voshchinnikov, V. G. Farafonov, Th. Henning, and A. Ya. Perelman, 2002: Light scattering tools for cosmic dust modeling, in Videen, G., and M. Kocifaj (eds), Optics of Cosmic Dust, Kluwer Academic Publishers, pp. 71–88.

    Google Scholar 

  • Il‘in, V. B., V. G. Farafonov, and E. V. Farafonov, 2007: Extended boundary condition method in combination with field expansions in terms of spheroidal functions, Opt. Spectr., 102, 278–289.

    Google Scholar 

  • Jackson, J. D., 1975: Classical Electrodynamics, New York: John Wiley & Sons.

    Google Scholar 

  • Kahnert, F. M., 2003a: Surface-integral formulation for electromagnetic scattering in spheroidal coordinates, J. Quant. Spectr. Rad. Transfer, 77, 61–78.

    Article  Google Scholar 

  • Kahnert, F. M., 2003b: Numerical methods in electromagnetic scattering theory, J. Quant. Spectr. Rad. Transfer, 7980, 775–824.

    Article  Google Scholar 

  • Kantorovich, L. V., and V. I. Krylov, 1964: Approximate Methods of Higher Analysis, New York: John Wiley & Sons.

    Google Scholar 

  • Komarov, I. V., L. I. Ponomarev, and S. Yu. Slavyanov, 1976: Spheroidal and Coulomb Spheroidal Functions, Moscow: Nauka.

    Google Scholar 

  • Lopatin, V. N., and F. Ya. Sid’ko, 1988: Introduction in Optics of Cell’s Suspension, Novosibirsk: Nauka.

    Google Scholar 

  • Meixner, J., 1950: Theorie der Beugung electromagnetischer Wellen in der vollkommen leitenden Kreissscheibe und verwandte Problemen, Ann. Phys., 6(7), 157–168.

    Article  Google Scholar 

  • Meixner, J., and W. Andrejewski, 1953: Strenge Theorie der Beugung ebener electromagnetischer Wellen an der vollkommen leitenden Kreissscheibe und an der kreisformigen Offnung im vollkommen leitenden ebenen Schirm. Ann. Phys., 6, 227–236.

    Article  Google Scholar 

  • Meixner, J., and F. W. Schefke, 1954: Mathieusche Funktionen und Scheroid Funktionen, Berlin: Springer Verlag.

    Google Scholar 

  • Meixner, J., F. W. Schefke, and G.Wolf, 1980: Mathieu functions and spheroidal functions and their mathematical foundations. Lect. Notes in Mathem., 837–886.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: a review, J. Quant. Spectr. Rad. Transfer, 55, 535–575.

    Article  Google Scholar 

  • Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles, San Diego: Academic Press.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. Lacis, 2002: Scattering, Absorption and Emission of Light by Small Particles, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical Physics, NewYork: McGraw- Hill.

    Google Scholar 

  • Onaka, T., 1980: Light scattering by spheroidal grains, Ann. Tokyo Astron. Observ., 18, 1–54.

    Google Scholar 

  • Schultz, F. M., K. Stamnes, and J. J. Stamnes, 1998: Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T-matrix computed in spheroidal coordinates, Appl. Opt., 37, 7875–7896.

    Article  Google Scholar 

  • Seker, S. S., 1986: Radar cross-section of thin dielectric bodies, IEEE Proc., H-133, 305– 309.

    Google Scholar 

  • Sinha, B. P., and R. H. McPhie, 1977: Electromagnetic scattering by prolate spheroids for a plane waves with arbitrary polarization and angle of incidence, Radio Sci., 12, 171–184.

    Article  Google Scholar 

  • Stratton, J. A., 1941: Electromagnetic Theory, New York: McGrow-Hill.

    Google Scholar 

  • Voshchinnikov, N. V., 1996: Electromagnetic scattering by homogeneous and coated spheroids: calculations using the separation of variables method, J. Quant. Spectr. Rad. Transfer, 55, 627–636.

    Article  Google Scholar 

  • Voshchinnikov, N.V., and V. G. Farafonov, 1988: Characteristics of radiation scattered by prolate and oblate perfectly conducting spheroids, (Sov.) Radiotech. Electron., 33, 1364–1373.

    Google Scholar 

  • Voshchinnikov, N. V., and V. G. Farafonov, 1993: Optical properties of spheroidal particles, Astrophys. Space Sci., 204, 19–86.

    Article  Google Scholar 

  • Voshchinnikov, N. V., and V. G. Farafonov, 2000: Applicability of quasi-static and Rayleigh approximations for spheroidal particles, Opt. Spectr., 88, 71–75.

    Article  Google Scholar 

  • Voshchinnikov, N. V., and V. G. Farafonov, 2003: Computation of radial prolate spheroidal wave functions using Jáffe’s series expansions, Comp. Math. Math. Phys., 43, 1299– 1309.

    Google Scholar 

  • Voshchinnikov, N. V., V. B. Il’in, Th. Henning, B. Michel, and V. G. Farafonov, 2000: Extinction and polarization of radiation by absorbing spheroids: shape/size effects and some benchmarks, J. Quant. Spectr. Rad. Transfer, 65, 877–893.

    Google Scholar 

  • Zakharova, N. T., and M. I. Mishchenko, 2000: Scattering properties of needlelike and platelike ice spheroids with moderate size parameters, Appl. Opt., 39, 5052–5057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Farafonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farafonov, V. (2013). Application of non-orthogonal bases in the theory of light scattering by spheroidal particles. In: Kokhanovsky, A. (eds) Light Scattering Reviews 8. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32106-1_5

Download citation

Publish with us

Policies and ethics