Skip to main content

Application of the Homotopy Analysis Method to Fluid Flow Problems

  • Chapter
Nonlinear Flow Phenomena and Homotopy Analysis

Abstract

The equations of viscous flow have been known for more than 100 years. In their complete form, these equations are very difficult to solve, even on modern digital computers. In fact, at high Reynolds numbers (turbulent flow), the equations are impossible to solve with present mathematical techniques, because the boundary conditions become randomly time-dependent. Nevertheless, it is very instructive to present and discuss these fundamental equations because they give many insights, yield several particular solutions, and can be examined for modeling purposes. Also, these equations can then be simplified, using Prandtl boundary-layer approximations. The resulting simpler system is very practical and yields many fruitful engineering solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Schlichting, Boundary-Layer Theory, McGraw-Hill Book Company, New York, 1987.

    Google Scholar 

  2. M. Navier, Memoire sur les lois du mouvement des fluides, Mémoires de l'Académie Royale des. Sciences, 6 (1827) 389.

    Google Scholar 

  3. S. D. Poisson, Memoire sur les equations generales de l'equilibre et du mouvement des corps solides elastiques et des fluides, Journal de l'École polytechnique, 13 (1831) 139.

    Google Scholar 

  4. B. de Saint-Venant, Note a joindre un memoire sur la dynamique des fluides, Comptes Rendus de l'Académie des Sciences, 17 (1843) 1240.

    Google Scholar 

  5. G. G. Stokes, On the theories of internal friction of fluids in motion, Transaction of the Cambridge Philosophical Society, 8 (1845) 287.

    Google Scholar 

  6. R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford, 1992.

    Google Scholar 

  7. C. V. Vradis and J. K. Hammad, Strongly coupled block-implicit solution technique for non-Newtonian convective heat transfer problems, Numerical Heat Transfer, 33 (1998) 79.

    Google Scholar 

  8. A. N. Alexandrou, T. M. Mcgilvreay and G. Burgos, Steady Hershel-Bulkley fluid flow in three-dimensional expansions, Journal of Non-Newtonian Fluid Mechanics, 100 (2001) 77.

    MATH  Google Scholar 

  9. L. Lefton and D. Wei, A penalty method for approximations of the stationary power-law Stokes problem, Eletronic Journal of Differential Equations, 7 (2001) 1.

    Google Scholar 

  10. F. T. Akyildiz, K. Vajravelu, R. N. Mohapatra, E. Sweet and R. A. Van Gorder, Implicit differential equation arising in non-Newtonian fluid flow, Applied Mathematics and Computation, 210 (2009) 189.

    MathSciNet  MATH  Google Scholar 

  11. A. M. Siddiqui, M. Ahmed and Q. K. Ghori, Thin film flow of non-Newtonian fluids on a moving belt, Chaos, Solitons & Fractals, 33 (2007) 1006.

    MathSciNet  MATH  Google Scholar 

  12. S. Asghar, T. Hayat and A. H. Kara, Exact solutions of thin film flows, Nonlinear Dynamics, 50 (2007) 229.

    MathSciNet  MATH  Google Scholar 

  13. M. Sajid, T. Hayat and S. Asghar, Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear Dynamics, 50 (2007) 27.

    MathSciNet  MATH  Google Scholar 

  14. R. Courant, Differential and Integral Calculus, Vol. 2, Wiley, 1988.

    Google Scholar 

  15. G. Birkhoff and G. Rota, Ordinary Differential Equation, 4th edn., Wiley, New York, 1989.

    Google Scholar 

  16. D. Sanchez, Ordinary Differential Equations and Stability Theory: An Introduction, Dover Publications, New York, 1979.

    MATH  Google Scholar 

  17. S. J. Liao, On the proposed homotopy analysis techniques for nonlinear problems and its application, Ph.D. dissertation, Shanghai Jiao Tong University, 1992.

    Google Scholar 

  18. S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall\CRC Press, Boca Raton, 2003.

    Google Scholar 

  19. S. J. Liao, An explicit, totally analytic approximation of Blasius' viscous flow problems, Int. J. Non-Linear Mech, 34 (1999) 759.

    MATH  Google Scholar 

  20. S. J. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147 (2004) 499.

    MathSciNet  MATH  Google Scholar 

  21. S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics, 119 (2007) 297.

    MathSciNet  Google Scholar 

  22. S. J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 983.

    MathSciNet  MATH  Google Scholar 

  23. C.L.M.H. Navier, Mémoire sur les lois du mouvement des fluids, Mém. Acad. Roy. Sci. Inst. France, 6 (1823) 389.

    Google Scholar 

  24. Y.D. Shikhmurzaev, The moving contact line on a smooth solid surface, International Jornal of Multiphase Flow, 19 (1993) 589.

    MATH  Google Scholar 

  25. C.H. Choi, J.A. Westin and K.S. Breuer, To slip or not to slip water flows in hydrophilic and hydrophobic microchannels: Proceedings of IMECE 2002, New Orleans, LA, Paper No. 2002-33707.

    Google Scholar 

  26. M.T. Matthews and J.M. Hill, Nano boundary layer equation with nonlinear Navier boundary condition, Journal of Mathematical Analalysis and Applications, 333 (2007) 381.

    MathSciNet  MATH  Google Scholar 

  27. R. A. Van Gorder, E. Sweet and K. Vajravelu, Nano boundary layers over stretching surfaces, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 1494.

    MathSciNet  MATH  Google Scholar 

  28. C.Y. Wang, Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Analysis: Real World Applications, 10 (2009) 375.

    MathSciNet  MATH  Google Scholar 

  29. C.Y. Wang, Flow due to a stretching boundary with partial slip — an exact solution of the Navier-Stokes equations, Chemical Engineering Science, 57 (2002) 3745.

    Google Scholar 

  30. H. Xu, S.J. Liao and G.X. Wu, Family of new solutions on the wall jet, Eur. J. Mech. B/Fluid, 27 (2008) 322.

    MathSciNet  MATH  Google Scholar 

  31. S.J. Liao, A new branch of boundary layer flows over a permeable stretching plate, Int. J. Non-linear Mech., 42 (2007) 819.

    MATH  Google Scholar 

  32. S.J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transfer, 48 (2005) 2529.

    MATH  Google Scholar 

  33. L.J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik, 21 (1970) 645.

    Google Scholar 

  34. U. Ascher, R. Mattheij and R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Classics in Applied Mathematics, 1995.

    Google Scholar 

  35. U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

    MATH  Google Scholar 

  36. S. Asghar, M. M. Gulzar and T. Hayat, Rotating flow of a third grade fluid by homotopy analysis method, Applied Mathematics and Computation, 165 (2005) 213.

    MathSciNet  MATH  Google Scholar 

  37. S.J. Liao, A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, Journal of Fluid Mechanics, 385 (1999) 101.

    MathSciNet  MATH  Google Scholar 

  38. S.J. Liao, An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. Non-Linear Mech., 38 (2003) 1173.

    MATH  Google Scholar 

  39. S.J. Liao, On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, Journal of Fluid Mechanics, 488 (2003) 189.

    MathSciNet  MATH  Google Scholar 

  40. M. Ayub, A. Rasheed and T. Hayat, Exact flow of a third grade fluid past a porous plate using homotopy analysis method, International Journal of Engineering Science, 41 (2003) 2091.

    MathSciNet  MATH  Google Scholar 

  41. S.J. Liao and I. Pop, Explicit analytic solution for similarity boundary layer equations, Int. J. Heat Mass Transfer, 47 (2004) 75.

    Google Scholar 

  42. H. Xc, An explicit analytic solution for free convection about a vertical flat plate embedded in a porous medium by means of homotopy analysis method, Applied Mathematics and Computation, 158 (2004) 433.

    MathSciNet  Google Scholar 

  43. T. Hayat, M. Khan and M. Ayub, On the explicit analytic solutions of an Oldroyd 6-constant fluid, International Journal of Engineering Science, 42 (2004) 123.

    MathSciNet  MATH  Google Scholar 

  44. T. Hayat, Y. Wang, A.M. Siddiqui, K. Hutter and S. Asghra, Perstaltic transport of a thirdorder fluid in a circular cylinderical tube, Mathematical Models and Methods in Applied Sciences, 12 (2002) 1691.

    MathSciNet  MATH  Google Scholar 

  45. R.L. Fosdick and K.R. Rajagopal, Thermodynamics and stability of fluids of third grade, Proceedings of the Royal Society of London A, 339 (1980) 351.

    MathSciNet  Google Scholar 

  46. K.R. Rajagopal and A.S. Gupta, An exact solution for a non-Newtonian fluid past an infinite porous plate, Meccanica, 19 (1984) 158.

    MathSciNet  MATH  Google Scholar 

  47. M. Sajid, Z. Abbas and T. Hayat, Homotopy analysis for boundary layer flow of a micropolar fluid through a porous channel, Applied Mathematical Modelling, 33 (2009) 4120.

    MathSciNet  MATH  Google Scholar 

  48. T. Hayat, A.H. Kara and E. Momoniat, Exact flow of a third grade fluid on a porous wall, Int. J. Non-Linear Mech., 33 (2003) 1533.

    MathSciNet  Google Scholar 

  49. T. Hayat and A.H. Kara, Couette flow of a third grade fluid with variable magnetic field, Mathematics and Computer Modelling, 43 (2006) 132.

    MathSciNet  MATH  Google Scholar 

  50. T. Hayat, S.B. Khan and M. Khan, The influence of Hall current on the rotating oscillating flows of an Oldroyd-B fluid in a porous medium, Nonlinear Dynamics, 47 (2007) 353.

    MathSciNet  MATH  Google Scholar 

  51. C. Fetecau and C. Fetecau, Decay of a potential vortex in an Oldroyd-B fluid, International Journal of Engineering Science, 43 (2005) 340.

    MathSciNet  MATH  Google Scholar 

  52. C. Fetecau and C. Fetecau, Unsteady flows of Oldroy-B fluids in a channel of rectangular cross-section, Int. J. Non-Linear Mech., 40 (2005) 1214.

    MATH  Google Scholar 

  53. C. Fetecau and C. Fetecau, On some axial Couette flows of non-Newtonian fluids, Zeitschrift für angewandte Mathematik und Physik, 56 (2005) 1098.

    MathSciNet  MATH  Google Scholar 

  54. C. Fetecau and C. Fetecau, Starting solutions for some unsteady unidirectional flows of a second grade fluid, International Journal of Engineering Science, 43 (2005) 781.

    MathSciNet  MATH  Google Scholar 

  55. W.C. Tan and T. Masuoka, Stokes first problem for a second grade fluid in a porous half-space with heated boundary, Int. J. Non-Linear Mech., 40 (2005) 515.

    MATH  Google Scholar 

  56. W.C. Tan and T. Masuoka, Stokes’ first problem for an Oldroyd-B fluid in a porous half space, Physics of Fluids, 17 (2005) 023101.

    MathSciNet  Google Scholar 

  57. C.I. Chen, C.K. Chen and Y.T. Yang, Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given volume flow rate conditions, Heat and Mass Transfer, 40 (2004) 203.

    Google Scholar 

  58. A.C. Eringen, Simple microfluids, International Journal of Engineering Science, 2 (1964) 205.

    MathSciNet  MATH  Google Scholar 

  59. A.C. Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics, 16 (1966) 1.

    MathSciNet  Google Scholar 

  60. T. Ariman, M.A. Turk and N.D. Sylvester, Application of microcontinuum fluid mechanics — a review, International Journal of Engineering Science, 12 (1973) 273.

    Google Scholar 

  61. A.C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer, New York, 2001.

    Google Scholar 

  62. G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Birkhauser, Basel, 1999.

    MATH  Google Scholar 

  63. A.S. Berman, Laminar flow in a channel with porous walls, Journal of Applied Physics, 24 (1953) 1232.

    MATH  Google Scholar 

  64. S.W. Yuan, Further investigation of laminar flow in channels with porous walls, Journal of Applied Physics, 27 (1956) 267.

    MATH  Google Scholar 

  65. W.A. Robinson, The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls, Journal of Engineering Mathematics, 10 (1976) 23.

    MATH  Google Scholar 

  66. M.B. Zaturska, P.G. Drazin and W.H.H. Banks, On the flow of a viscous fluid driven along a channel by suction at porous walls, Fluid Dynamics Research, 4 (1988) 151.

    Google Scholar 

  67. A. Desseaus, Influence of a magnetic field over a laminar viscous flow in a semi-porous channel, International Journal of Engineering Science, 37 (1999) 1781.

    Google Scholar 

  68. J.J. Choi, Z. Rusak and J.A. Tichy, Maxwell fluid suction flow in a channel, Journal of Non-Newtonian Fluid Mechanics, 85 (1999) 165.

    MATH  Google Scholar 

  69. Z. Abbas, M. Sajid and T. Hayat, MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel, Theoretical Computational Fluid Dynamics, 20 (2006) 229.

    MATH  Google Scholar 

  70. S.J. Liao and K.F. Cheung, Homotopy analysis of nonlinear progressive waves in deep water, Journal of Engineering Mathematics, 45 (2003) 105.

    MathSciNet  MATH  Google Scholar 

  71. W. Wu and S.J. Liao, Solving solitary waves with discontinuity by means of homotopy analysis method, Chaos Solitons Fractals, 26 (2005) 177.

    MATH  Google Scholar 

  72. Y. Tan, H. Xu and S.J. Liao, Explicit series solution of travelling waves with a front of Fisher equation, Chaos Solitons Fractals, 31 (2007) 462.

    MathSciNet  MATH  Google Scholar 

  73. S.J. Liao, An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Communications in Nonlinear Science and Numerical Simulation, 11 (2006) 326.

    MathSciNet  MATH  Google Scholar 

  74. S.J. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 169 (2005) 1186.

    MathSciNet  MATH  Google Scholar 

  75. S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Physics Letters A, 361 (2007) 478.

    MATH  Google Scholar 

  76. S.P. Zhu, An exact and explicit solution for the valuation of American put options, Quantitative Finance, 6 (2006) 229.

    MathSciNet  MATH  Google Scholar 

  77. S.P. Zhu, A closed-form analytical solution for the valuation of convertable bonds with constant dividend yield, Australian and New Zealand Industrial and Applied Mathematics Journal, 47 (2006) 477.

    MATH  Google Scholar 

  78. Y. Wu, C. Wang and S.J. Liao, Solving solitary waves with discontinuity by means of the homotopy analysis method, Chaos Solitons Fractals, 26 (2005) 177.

    MathSciNet  MATH  Google Scholar 

  79. T. Hayat and M. Khan, Homotopy solution for a generalized second grade fluid past a porous plate, Nonlinear Dynamics, 42 (2005) 395.

    MathSciNet  MATH  Google Scholar 

  80. T. Hayat, M. Khan and S. Asghar, Magnetohydrodynamic flow of an Oldroyd 6-constant fluid, Applied Mathematics and Computation, 155 (2004) 417.

    MathSciNet  MATH  Google Scholar 

  81. T. Hayat, M. Khan, A.M. Siddiqui and S. Asghar, Transient flows of a second grade fluid, Int. J. Non-Linear Mech., 39 (2004) 1621.

    MathSciNet  MATH  Google Scholar 

  82. T. Hayat, M. Khan and S. Asghar, Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta Mechanica, 168 (2004) 213.

    MATH  Google Scholar 

  83. T. Hayat, M. Khan and M. Ayub, Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, Journal of Mathematical Analysis and Applications, 298 (2004) 225.

    MathSciNet  MATH  Google Scholar 

  84. T. Hayat, Z. Abbas and M. Sajid, Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Physics Letters A, 358 (2006) 396.

    MATH  Google Scholar 

  85. T. Hayat and M. Sajid, On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Physics Letters A, 361 (2007) 316.

    MATH  Google Scholar 

  86. M. Sajid, T. Hayat and S. Asghar, On the analytic solution of the steady flow of a fourth grade fluid, Physics Letters A, 355 (2006) 18.

    Google Scholar 

  87. M. Sajid, T. Hayat and S. Asghar, Comparison of the HAM and HPM solutions of thin film flow of non-Newtonian fluids on a moving belt, Nonlinear Dynamics, 50 (2007) 27.

    MathSciNet  MATH  Google Scholar 

  88. D.A.S. Rees and I. Pop, Free convection boundary layer flow of a micropolar fluid from a vertical flat plate, IMA Journal of Applied Mathematics, 61 (2001) 179.

    MathSciNet  Google Scholar 

  89. G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite flat plate, International Journal of Engineering Science, 14 (1976) 639.

    MATH  Google Scholar 

  90. S.K. Jena and M.N. Mathur, Similarity solutions for laminar free convection flow of a thermo-micropolar fluid past a nonisothermal flat plate, International Journal of Engineering Science, 19 (1981) 1431.

    MATH  Google Scholar 

  91. G.S. Guram and A.C. Smith, Stagnation flows of micropolar fluids with strong and weak interactions, Computer Mathematics and Application, 6 (1980) 213.

    MathSciNet  MATH  Google Scholar 

  92. S.J. Liao, An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Communications in Nonlinear Science and Numerical Simulation, 11 (2006) 326.

    MathSciNet  MATH  Google Scholar 

  93. B.C. Sakiadis, Boundary layer behavior on continuous solid surface, AIChE Journal, 7 (1961) 26.

    Google Scholar 

  94. W.H.H. Banks, Similarity solutions of the boundary-layer equations for a stretching wall, Journal of Mechanics and Theoretical Applications, 2 (1983) 375.

    MATH  Google Scholar 

  95. W.H.H. Banks and M.B. Zaturska, Eigensolutions in boundary-layer flow adjectent to a stretching wall, IMA journal of Applied Mathematics, 36 (1986) 263.

    MathSciNet  MATH  Google Scholar 

  96. L.J. Grubka and K.M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature, ASME Jornal of Heat Transfer, 107 (1985) 248.

    Google Scholar 

  97. M.E. Ali, Heat transfer characteristics of a continuous stretching surface, Wärme Stoffübertrag., 29 (1994) 227.

    Google Scholar 

  98. L.E. Erickson, L.T. Fan and V.G. Fox, Heat and mass transfer on a moving continuous flat plate with suction or injection, Industrial Engineering Chemistry, 5 (1966) 19.

    Google Scholar 

  99. P.S. Gupta and A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Canada Journal of Chemical Engineering, 55 (1977) 744.

    Google Scholar 

  100. C.K. Chen and M.I. Char, Heat and mass transfer on a continuous stretching surface with suction or blowing, Journal of Mathematical Analysis and Applications, 135 (1988) 568.

    MathSciNet  MATH  Google Scholar 

  101. M.A. Chaudhary, J.H. Merkin and I. Pop, Similarity solutions in the free convection boundary-layer flows adjacent to vertical permeable surfaces in porous media, Eur. J. Mech. B/Fluids, 14 (1995) 217.

    MathSciNet  MATH  Google Scholar 

  102. E.M.A. Elbashbeshy, Heat transfer over a stretching surface with variable surface heat flux, Journal of Physics D: Applied Physics, 31 (1998) 1951.

    Google Scholar 

  103. E. Magyari and B. Keller, Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B/Fluids, 19 (2000) 109.

    MathSciNet  MATH  Google Scholar 

  104. K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid (Part I), Quarterly Journal of Mechanics, 4 (1951) 182.

    MathSciNet  MATH  Google Scholar 

  105. K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid (Part II), Quarterly Journal of Mechanics and Applied Mathematics, 22 (1973) 143.

    Google Scholar 

  106. M.G. Hall, The boundary layer over an impulsively started flat plate, Proceedings of the Royal Society of London A, 310 (1969) 401.

    MATH  Google Scholar 

  107. S.C.R. Dennis, The motion of a viscous fluid past an impulsively started semi-infinite flat plate, Journal of Institute of Mathematics and Its Applications, 10 (1972) 105.

    MATH  Google Scholar 

  108. C.B. Watkins, Heat transfer in the boundary layer over an impulsively stearted flat plate, Journal of Heat Transfer, 97 (1975) 282.

    Google Scholar 

  109. R. Seshadri, N. Sreeshylan and G. Nath, Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion. Int. J. Heat Mass Transfer, 45 (2002) 1345.

    MATH  Google Scholar 

  110. I. Pop and T.Y. Na, Unsteady flow past a stretching sheet, mechanics Research Communications, 23 (1996) 413.

    MATH  Google Scholar 

  111. C.Y. Wang, G. Du, M. Miklavcic and C.C. Chang, Impulsive stretching of a surface in a viscous fluid, SIAM Journal of Applied Mathematics, 57 (1997) 1.

    MathSciNet  MATH  Google Scholar 

  112. N. Nazar, N. Amin and I. Pop, Unsteady boundary layer flow due to stretching surface in a rotating fluid, Mechanics Research Communications, 31 (2004) 121.

    MATH  Google Scholar 

  113. J.C. Williams and T.H. Rhyne, Boundary layer development on a wedge impulsively set into motion, SIAM Journal of Applied Mathematics, 38 (1980) 215.

    MathSciNet  MATH  Google Scholar 

  114. S.J. Liao and A. Campo, Analytic solutions of the temperature distribution in Blasius viscous flow problems, Journal of Fluid Mechanics, 453 (2002) 411.

    MathSciNet  MATH  Google Scholar 

  115. S.J. Liao, A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, Journal of Fluid Mechanics, 385 (1999) 101.

    MathSciNet  MATH  Google Scholar 

  116. M. Ayub, A. Rasheed and T. Hayat, Exact flow of a third grade fluid past a porous plate using homotopy analysis method, International Journal of Engineering Science, 41 (2003) 2091.

    MathSciNet  MATH  Google Scholar 

  117. E.O. Ifidon, Numerical studies of viscous incompressible flow between two rotating concentric spheres, Journal of Applied Mathematics, 2004 (2004) 91.

    MathSciNet  MATH  Google Scholar 

  118. F.M. Allan and M.I. Syam, On the analytic solutions of the non-homogenous Blasius problem, Journal of Computer Applications and Mathematics, 182 (2005) 362.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vajravelu, K., van Gorder, R.A. (2012). Application of the Homotopy Analysis Method to Fluid Flow Problems. In: Nonlinear Flow Phenomena and Homotopy Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32102-3_5

Download citation

Publish with us

Policies and ethics