Some New Approaches in Functional Programming Based on Categories

  • Viliam Slodičák
  • Pavol Macko
  • Valerie Novitzká
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7241)


In this paper we deal the recursion and corecursion in functional programming. We discuss about the morphisms which express the recursion or corecursion, resp. We apply the linear logic which provides a logical perspective on computational issues such as control of resources and order of evaluation. The most important feature of linear logic is that formulae are considered as actions and its truth value depends on an internal state of a dynamic system. In this paper we present an alternative way of computation based on algebras and coalgebras. The correctness of our approaches we show by Curry-Howard correspondence.


category theory hylomorphism linear logic Curry-Howard correspondence signature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall International (1990) ISBN 0-13-120486-6Google Scholar
  2. 2.
    Blute, R., Scott, P.: Category theory for linear logicians. In: Erhard, T., Girard, J.-Y., Ruet, P. (eds.) Linear Logic in Computer Science. London Mathematical Society Lecture Note Series. Cambridge Univ.Press (2004)Google Scholar
  3. 3.
    Cheng, F.: Mda implementation based on patterns and action semantics. In: 2010 Third International Conference on Information and Computing, vol. 2, pp. 25–28 (2010)Google Scholar
  4. 4.
    Girard, J.: Linear logic: Its syntax and semantics. Cambridge Univ. Press (2003)Google Scholar
  5. 5.
    Jacobs, B.: Introduction to coalgebra. Towards Mathematics of States and Observations, draft (2005)Google Scholar
  6. 6.
    Leroy, X.: The objective caml system release 3.12. Tech. rep., Institut National de Recherche en Informatique et en Automatique (2008)Google Scholar
  7. 7.
    Mosses, P.D.: Theory and Practice of Action Semantics. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 37–61. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction. John Wiley & Sons, Inc. (2003)Google Scholar
  9. 9.
    Novitzká, V., Mihályi, D., Verbová, A.: Coalgebras as models of systems behaviour. In: International Conference on Applied Electrical Engineering and Informatics, Greece, Athens, pp. 31–36 (2008)Google Scholar
  10. 10.
    Planas, E., Cabot, J., Gómez, C.: Verifying Action Semantics Specifications in UML Behavioral Models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 125–140. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Reichel, H.: Behavioural equivalence - a unifying concept for initial and final specification methods. In: 3rd Hungarian Computer Science Conference, Akadémia kiadó, vol. 3, pp. 27–39 (1981)Google Scholar
  12. 12.
    Slodičák, V., Macko, P.: New approaches in functional programming using algebras and coalgebras. In: European Joint Conferrences on Theory and Practise of Software, ETAPS, Workshop on Generative Technologies, pp. 13–23 (2011)Google Scholar
  13. 13.
    Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. University of Copenhagen a University of Warsaw (1999)Google Scholar
  14. 14.
    Stuurman, G.: Action semantics applied to model driven engineering (November 2010)Google Scholar
  15. 15.
    Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-values (co)iteration. Informatica (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Viliam Slodičák
    • 1
  • Pavol Macko
    • 1
  • Valerie Novitzká
    • 1
  1. 1.Faculty of Electrical Engineering and InformaticsTechnical University of KošiceKošiceSlovak Republic

Personalised recommendations