Dynamic Semantics as Monadic Computation

  • Christina Unger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7258)


This paper proposes a formulation of the basic ideas of dynamic semantics in terms of the state monad. Such a monadic treatment allows to specify meanings as computations that clearly separate operations accessing and updating the context from purely truth conditional meaning composition.


Natural Language Semantic Sentential Negation Dynamic Semantic Existential Closure Input Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asher, N., Pogodalla, S.: A Montegovian treatment of modal subordination. In: Proceedings of Semantics and Linguistic Theory XX (2010)Google Scholar
  2. 2.
    Barker, C.: Continuations and the nature of quantification. Natural Language Semantics 10, 211–242 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bekki, D.: Monads and Meta-lambda Calculus. In: Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI 2008. LNCS (LNAI), vol. 5447, pp. 193–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    de Groote, P.: Towards a Montegovian account of dynamics. In: Proceedings of Semantics and Linguistic Theory XVI (2006)Google Scholar
  5. 5.
    de Groote, P., Lebedeva, E.: Presupposition accommodation as exception handling. In: Proceedings of the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL 2010, pp. 71–74 (2010)Google Scholar
  6. 6.
    Groenendijk, J., Stokhof, M.: Dynamic Predicate Logic. Linguistics and Philosophy 14(1), 39–100 (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. PhD thesis, University of Massachusetts, Amherst (1982)Google Scholar
  8. 8.
    Lewis, D.: Adverbs of quantification. In: Keenan, E. (ed.) Formal Semantics of Natural Language, pp. 3–15. Cambridge University Press (1975)Google Scholar
  9. 9.
    Moggi, E.: Computational lambda-calculus and monads. In: Symposium on Logic in Computer Science, Asilomar, California. IEEE (June 1989)Google Scholar
  10. 10.
    Ogata, N.: Towards computational non-associative lambek lambda-calculi for formal pragmatics. In: Proceedings of the Fifth International Workshop on Logic and Engineering of Natural Language Semantics (LENLS 2008) in Conjunction with the 22nd Annual Conference of the Japanese Society for Artificial Intelligence 2008, pp. 79–102 (2008)Google Scholar
  11. 11.
    Pagin, P., Westerståhl, D.: Predicate logic with flexibly binding operators and natural language semantics. Journal of Logic, Language and Information 2(2), 89–128 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Shan, C.-C.: Monads for natural language semantics. In: Striegnitz, K. (ed.) Proceedings of the 2001 European Summer School in Logic, Language and Information Student Session, pp. 285–298 (2002)Google Scholar
  13. 13.
    Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science 2(4), 461–493 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christina Unger
    • 1
  1. 1.CITECBielefeld UniversityGermany

Personalised recommendations