Advertisement

Conjoined Nominal Expressions in Japanese

Interpretation through Monad
  • J. -R. Hayashishita
  • Daisuke Bekki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7258)

Introduction

This paper studies nominal expressions in Japanese that are formed by conjoining two or more nominal expressions with conjunctions, and presents a theory of nominal expressions that captures their behaviors. In what follows, such nominal expressions are referred to as conjoined nominal expressions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bekki, D.: Monads and meta-lambda calculus. In: The Fifth International Workshop on Logic and Engineering of Natural Language Semantics (LENLS 2008) in Conjunction with the 22nd Annual Conference of the Japanese Society for Artificial Intelligence 2008, Asahikawa, Japan, pp. 56–78 (2008)Google Scholar
  2. 2.
    Bekki, D.: Monads and Meta-lambda Calculus. In: Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI 2008. LNCS (LNAI), vol. 5447, pp. 193–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bekki, D., Masuko, M.: Meta-lambda calculus: Syntax and semantics. In: McCready, E., Yabushita, K., Yoshimoto, K. (eds.) Formal Approaches to Semantics and Pragmatics. Springer (2012)Google Scholar
  4. 4.
    Gallin, D.: Intensional and Higher-Order Modal Logic. With Application to Montague Semantics. North-Holland Publisher/Elsevier Publisher, Amsterdam, New York (1975)Google Scholar
  5. 5.
    Gazdar, G.: A cross-categorial semantics for conjunction. Linguistics and Philosophy 3(1980), 407–409 (1980)CrossRefGoogle Scholar
  6. 6.
    Gleitman, L.: Coordinating conjunctions in english. Language 41, 260–293 (1965)CrossRefGoogle Scholar
  7. 7.
    Henkin, L.: A theory of propositional types. Fundamenta Mathematicae 52, 323–344 (1963)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Link, G.: The logical analysis of plurals and mass terms: A lattice-theoretical approach. In: Bauerle, R., Schwarze, C., von Stechow, A. (eds.) Meaning, Use and Interpretation of Language, pp. 302–323. De Gruyter, Berlin (1983)Google Scholar
  9. 9.
    Ogata, N.: Towards computational non-associative lambek lambda-calculi for formal pragmatics. In: The Fifth International Workshop on Logic and Engineering of Natural Language Semantics (LENLS 2008) in Conjunction with the 22nd Annual Conference of the Japanese Society for Artificial Intelligence 2008, Asahikawa, Japan, pp. 79–102 (2008)Google Scholar
  10. 10.
    Shan, C.C.: Monads for natural language semantics. In: Striegnitz, K. (ed.) The ESSLLI 2001 Student Session (13th European Summer School in Logic, Language and Information), pp. 285–298 (2001)Google Scholar
  11. 11.
    Tanaka, D.: Rensetumeisiku no sukoopu to bun no imirikai moderu ’The scope of conjoined nominal expressions and sentence interpretation’. Doctoral dissertation, Kyushu University (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. -R. Hayashishita
    • 1
  • Daisuke Bekki
    • 2
  1. 1.University of OtagoNew Zealand
  2. 2.Ochanomizu UniversityJapan

Personalised recommendations