WUENIC – A Case Study in Rule-Based Knowledge Representation and Reasoning

  • Robert Kowalski
  • Anthony Burton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7258)


WUENIC is a rule-based system implemented as a logic program, developed by WHO and UNICEF for estimating global, country by country, infant immunization coverage. It possesses many of the characteristics of rule-based legislation, facilitating decisions that are consistent, transparent and replicable. In this paper, we focus on knowledge representation and problem-solving issues, including the use of logical rules versus production rules, backward versus forward reasoning, and rules and exceptions versus argumentation.


WUENIC rules and exceptions logic programming argumentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.: The British Nationality Act as a Logic Program. CACM 29(5), 370–386 (1986)Google Scholar
  2. 2.
    Burton, A., Monash, R., Lautenbach, B., Gacic-Dobo, M., Neill, M., Karimov, R., Wolfson, L., Jones, G., Birmingham, M.: WHO and UNICEF Estimates of National Infant Immunization Coverage: Methods and Processes. Bull. World Health Organization 87, 535–541 (2009)CrossRefGoogle Scholar
  3. 3.
    Prakken, H., Sartor, G.: A Dialectical Model of Assessing Conflicting Arguments in Legal Reasoning. Journal of Artificial Intelligence and Law 4(3-4) (1996)Google Scholar
  4. 4.
    Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Non-monotonic Reasoning, Logic Programming and N-person Games. Journal of Artificial Intelligence 77, 321–357 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An Abstract Argumentation-theoretic Approach to Default Reasoning. Journal of Artificial Intelligence 93(1-2), 63–101 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dung, P.M., Kowalski, R., Toni, F.: Dialectic proof procedures for Assumption-Based, Admissible Argumentation. Journal of Artificial Intelligence 170(2), 114–159 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database Engine. SIGMOD Rec. 23(2), 442–453 (1994)CrossRefGoogle Scholar
  8. 8.
    Grosof, B.N., Labrou, Y., Chan, H.Y.: A Declarative Approach to Business Rules in Contracts: Courteous Logic Programs in XML. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 68–77. ACM, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially Intelligent. Cambridge University Press, Cambridge (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kowalski, R., Sadri, F.: Integrating Logic Programming and Production Systems in Abductive Logic Programming Agents. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 1–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Brown, D.W., Burton, A., Gacic-Dobo, M., Karimov, R.I.: A Summary of Global Routine Immunization Coverage through 2010. Open Infect. Dis. J. 5., 115–117 (2011)CrossRefGoogle Scholar
  12. 12.
    Kowalski, R.: Logic for Problem Solving. Elsevier Science Publishing Company (1979),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Kowalski
    • 1
  • Anthony Burton
    • 2
  1. 1.Imperial College LondonUK
  2. 2.World Health OrganizationGenevaSwitzerland

Personalised recommendations