Skip to main content

Spin Dynamics in the Time and Frequency Domain

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 246))

Abstract

The current status of experimental approaches to analyze the spin wave dynamics in ferromagnetic nanoscale structures is reviewed. Recent developments in frequency- and field swept spectroscopy to determine the resonant response of nanoscale ferromagnets are described together with time-resolved measurements in the GHz frequency and pico second time domain, respectively. Examples for the analysis and manipulation of different mechanisms for the relaxation of the magnetization after microwave excitation into its ground state are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a more detailed description of spin torque, see Chap. 2 by J. Lindner et al. in this book

  2. 2.

    A similar equation is presented in Chap. 2 by J. Lindner et al, though in terms of the Landau-Lifshitz-Gilbert damping phenomenology rather than the Landau-Lifshitz formulation employed here. In the limit of small damping, both equations are equivalent.

  3. 3.

    This particular form of the susceptibility tensor presumes that \({d^{2}{U}^{\prime }} \mathord {\left. {} \right. } {\left( {dm_{x} dm_{y} } \right)}=0\), i.e. the \(x\) and \(y\) coordinates have been chosen to lie along principal axes of the anisotropy, and the applied field is perpendicular to the \(x-y\) plane.

  4. 4.

    One must remember that the magnetization and angular momentum are antiparallel for electrons. Thus, a torque that is antiparallel to the magnetization will act to increase the magnetization along the torque.

References

  1. M. Zomack, K. Baberschke, Submonolayers of paramagnetic \(\text{NO}_2\) adsorbed on Argon and Xenon films. Phys. Rev. B 36, 5756 (1987)

    Google Scholar 

  2. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, USA, 2012). ISBN 978-0-19-965152-8

    Google Scholar 

  3. M. Faehnle, C. Illg, Electron theory of fast and ultrafast dissipative magnetization dynamics. J. Phys. Condens. Matter 23, 493201 (2011)

    Google Scholar 

  4. T.G. Phillips, H.M. Rosenberg, Spin waves in ferromagnets. Rep. Progr. Phys. 29, 285 (1966)

    Article  ADS  Google Scholar 

  5. A.I. Achiezer, V.G. Barjachtar, M.I. Kaganov, Spinwellen in ferromagnetika und antiferromagnetika. Fortschritte der Physik 10, 471 (1962)

    Article  ADS  Google Scholar 

  6. S.-K. Kim, Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. D Appl. Phys. 43, 264004 (2010)

    Google Scholar 

  7. H. Puszkarski, Theory of surface states in spin wave resonance. Progr. Surf. Sci. 9, 191–247 (1979)

    Google Scholar 

  8. B. Hillebrands, in Brillouin Light Scattering from Layered Magnetic Structures. vol. 75, ed. by M. Cardona, G. Gntherodt, Light Scattering in Solids VII, Topics in Applied Physics, (Springer, Berlin 2000), pp. 174–289. 10.1007/BFb0103386

    Google Scholar 

  9. Y. Zhang, P.A. Ignatiev, J. Prokop, I. Tudosa, T.R.F. Peixoto, W.X. Tang, Kh Zakeri, V.S. Stepanyuk, J. Kirschner, Elementary excitations at magnetic surfaces and their spin dependence. Phys. Rev. Lett. 106, 127201 (2011)

    Article  ADS  Google Scholar 

  10. S. Schwieger, J. Kienert, K. Lenz, J. Lindner, K. Baberschke, W. Nolting, Spin-wave excitations: The main source of the temperature dependence of interlayer exchange coupling in nanostructures. Phys. Rev. Lett. 98, 057205 (2007)

    Article  ADS  Google Scholar 

  11. Yi. Li, M. Farle, K. Baberschke, Critical spin fluctuations and Curie temperatures of ultrathin ni(111)/w(110): A magnetic-resonance study in ultrahigh vacuum. Phys. Rev. B 41, 9596 (1990)

    Google Scholar 

  12. O. Margeat, M. Tran, M. Spasova, M. Farle, Magnetism and structure of chemically disordered Fé\(\text{Pt}_{3}\) nanocubes. Phys. Rev. B 75, 134410 (2007)

    Article  ADS  Google Scholar 

  13. S. Loth, M. Etzkorn, C.P. Lutz, D.M. Eigler, A.J. Heinrich, Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628 (2010)

    Google Scholar 

  14. K. Ounadjela, B. Hillebrands (ed.), in Spin Dynamics in Confined Magnetic Structures I, II and III. Topics in Applied Physics, (Springer, Berlin, 2002, 2004 and 2006)

    Google Scholar 

  15. A. Vansteenkiste, K.W. Chou, M. Weigand, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, G. Woltersdorf, C.H. Back, G. Schütz, B. van Waeyenberge, X-ray imaging of the dynamic magnetic vortex core deformation. Nat. Phys. 5, 332 (2009)

    Article  Google Scholar 

  16. V.E. Demidov, S. Urazhdin, S.O. Demokritov, Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984 (2010)

    Article  ADS  Google Scholar 

  17. G. Woltersdorf, O. Mosendz, B. Heinrich, C.H. Back, Magnetization Dynamics due to Pure Spin Currents in Magnetic Double Layers. Phys. Rev. Lett. 99, 246603 (2007)

    Article  ADS  Google Scholar 

  18. A. Mekonnen, M. Cormier, A.V. Kimel, A. Kirilyuk, A. Hrabec, L. Ranno, T. Rasing, Femtosecond Laser Excitation of Spin Resonances in Amorphous Ferrimagnetic \(Gd_{1-x}\text{Co}_{x}\) Alloys. Phys. Rev. Lett. 107, 117202 (2011)

    Article  ADS  Google Scholar 

  19. J. Goulon, A. Rogalev, G. Goujon, F. Wilhelm, J.B. Youssef, C. Gros, J.-M. Barbe, R. Guilard, X-ray detected magnetic resonance: a unique probe of the precession dynamics of orbital magnetization components. Int. J. Mol. Sci. 12, 8797 (2011)

    Google Scholar 

  20. S. Pizzini, J. Vogel, M. Bonfim, A. Fontaine, in Time-Resolved x-ray Magnetic Circular Dichroism : A Selective Probe of Magnetization Dynamics on Nanosecond Timescales. vol. 87, ed. by B. Hillebrands, K. Ounadjela, Spin Dynamics in Confined Magnetic Structures II, Topics in Applied Physics, (Springer, Berlin 2003), pp. 157–187

    Google Scholar 

  21. H. Wende, Recent advances in x-ray absorption spectroscopy. Rep. Progr. Phys. 67, 2105 (2004)

    Google Scholar 

  22. S. Buschhorn, F. Brüssing, R. Abrudan, H. Zabel, Precessional damping of fe magnetic moments in a feni film. J. Phys. D Appl. Phys. 44, 165001 (2011)

    Google Scholar 

  23. R. Salikhov, R. Abrudan, F. Brüssing, St. Buschhorn, M. Ewerlin, F. Radu, I.A. Garifullin, H. Zabel, Precessional dynamics and damping in Co/Cu/Py spin valves. Appl. Phys. Lett. 99, 092509 (2011)

    Google Scholar 

  24. I. Barsukov, R. Meckenstock, J. Lindner, M. Möller, C. Hassel, O. Posth, M. Farle, H. Wende, Tailoring spin relaxation in thin films by tuning extrinsic relaxation channels. IEEE Trans. Magn. 46, 2252 (2010)

    Article  ADS  Google Scholar 

  25. M. Farle, Ferromagnetic resonance of ultrathin metallic layers. Rep. Progr. Phys. 61, 755 (1998)

    Article  ADS  Google Scholar 

  26. R. Arias, D.L. Mills, Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B 60, 7395 (1999)

    Google Scholar 

  27. I. Barsukov, S. Mankovsky, A. Rubacheva, R. Meckenstock, D. Spoddig, J. Lindner, N. Melnichak, B. Krumme, S.I. Makarov, H. Wende, H. Ebert, M. Farle, Magnetocrystalline anisotropy and gilbert damping in iron-rich \(\text{fe}_{1-x}\text{si}_{x}\) thin films. Phys. Rev. B 84, 180405 (2011)

    Article  ADS  Google Scholar 

  28. I. Barsukov, F.M. Römer, R. Meckenstock, K. Lenz, J. Lindner, S. Hemken to Krax, A. Banholzer, M. Körner, J. Grebing, J. Fassbender, M. Farle, Frequency dependence of spin relaxation in periodic systems. Phys. Rev. B 84, 140410 (2011)

    Google Scholar 

  29. V. Kamberský, Spin-orbital gilbert damping in common magnetic metals. Phys. Rev. B 76, 134416 (2007)

    Article  ADS  Google Scholar 

  30. A.N. Anisimov, M. Farle, P. Poulopoulos, W. Platow, K. Baberschke, P. Isberg, R. Wäppling, A.M.N. Niklasson, O. Eriksson, Orbital magnetism and magnetic anisotropy probed with ferromagnetic resonance. Phys. Rev. Lett. 82, 2390 (1999)

    Article  ADS  Google Scholar 

  31. W. Platow, A.N. Anisimov, G.L. Dunifer, M. Farle, K. Baberschke, Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin films. Phys. Rev. B 58, 5611 (1998)

    Article  ADS  Google Scholar 

  32. H. Suhl, Theory of the magnetic damping constant. IEEE Trans. Mag. 34(4, Part 1), 1834–1838 (1998). 7th Joint MMM-Intermag Conference. (San Francisco, California, 1998), Jan. 06–09

    Google Scholar 

  33. K. Baberschke, in Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance. vol. 3, ed. by H. Kronmüller, S.S. Parkin, Handbook of Magnetism and Advanced Magnetic Materials, (Wiley, 2007), p. 1617. ISBN: 978-0-470-02217-7

    Google Scholar 

  34. I. Rod, O. Kazakova, D.C. Cox, M. Spasova, M. Farle, The route to single magnetic particle detection: a carbon nanotube decorated with a finite number of nanocubes. Nanotechnology, 20, 19 (2009)

    Google Scholar 

  35. J. Lindner, I. Barsukov, C. Raeder, C. Hassel, O. Posth, R. Meckenstock, P. Landeros, D.L. Mills, Two-magnon damping in thin films in case of canted magnetization: theory versus experiment. Phys. Rev. B 80, 224421 (2009)

    Article  ADS  Google Scholar 

  36. C.W. Haas, H.B. Callen, Magnetism, vol. I (Academic Press, New York and London, 1963)

    Google Scholar 

  37. W. Bailey, P. Kabos, F. Mancoff, S. Russek. Control of magnetization dynamics in \(\text{Ni}_{81}\text{Fe}_{19}\) thin films through the use of rare-earth dopants. IEEE Trans. Mag. 37, 1749 (2001)

    Google Scholar 

  38. J.O. Rantschler, R.D. McMichael, A. Castillo, A.J. Shapiro Jr, W.F. Egelhoff, B.B. Maranville, D. Pulugurtha, A.P. Chen, L.M. Connors, Effect of 3d, 4d, and 5d transition metal doping on damping in permalloy thin films. J. Appl. Phys. 101, 033911 (2007)

    Article  ADS  Google Scholar 

  39. G. Woltersdorf, M. Kiessling, G. Meyer, J.-U. Thiele, C.H. Back, Damping by slow relaxing rare earth impurities in \(\text{ni}80\text{fe}20\). Phys. Rev. Lett. 102, 257602 (2009)

    Google Scholar 

  40. J.-M.L. Beaujour, A.D. Kent, D. Ravelosona, I. Tudosa, E.E. Fullerton, Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions. J. Appl. Phys. 109 (2011)

    Google Scholar 

  41. C. Bilzer, T. Devolder, C. Chappert, O. Plantevin, A.K. Suszka, B.J. Hickey, A. Lamperti, B.K. Tanner, B. Mahrov, S.O. Demokritov, Ferromagnetic resonance linewidth reduction in feau multilayers using ion beams. J. Appl. Phys. 103, 07B518 (2008)

    Google Scholar 

  42. I. Barsukov, P. Landeros, R. Meckenstock, J. Lindner, D. Spoddig, Z.-A. Li, B. Krumme, H. Wende, D. L. Mills, M. Farle, Tuning magnetic relaxation by oblique deposition. Phys. Rev. B 85, 014420 (2012)

    Google Scholar 

  43. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66, 224403 (2002)

    Google Scholar 

  44. X. Joyeux, T. Devolder, J.-V. Kim, Y. Gomez De La Torre, S. Eimer, C. Chappert, Configuration and temperature dependence of magnetic damping in spin valves. J. Appl. Phys. 110 (2011)

    Google Scholar 

  45. J. Lindner, K. Baberschke, Ferromagnetic resonance in coupled ultrathin films. J. Phys. C 15, S465 (2002)

    Google Scholar 

  46. Kh. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S.S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, Z. Frait, Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering. Phys. Rev. B 76, 104416 (2007)

    Google Scholar 

  47. Kh. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S.S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, Z. Frait, Erratum: Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering [phys. rev. b 76, 104416 (2007)]. Phys. Rev. B 80, 059901 (2009)

    Google Scholar 

  48. M. Yulikov, M. Sterrer, T. Risse, H.-J. Freund, Gold atoms and clusters on MgO(100) films; an epr and iras study. Surf. Sci. 603(10–12), 1622–1628 (2009)

    Google Scholar 

  49. M. Farle, M. Zomack, K. Baberschke, ESR of adsorbates on single crystal metal surfaces under UHV conditions. Surf. Sci. 160(1), 205–216 (1985)

    Google Scholar 

  50. A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O. Posth, D. Suter, M. Farle, J. Lindner, Visualization of spin dynamics in single nanosized magnetic elements. Nanotechnology 22, 295713 (2011)

    Google Scholar 

  51. S.S. Kalarickal, P. Krivosik, M. Wu, C.E. Patton, M.L. Patton, M.L. Schneider, P. Kabos, T.J. Silva, J.P. Nibarger, Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods. J. Appl. Phys. 99, 093909 (2006)

    Google Scholar 

  52. G. Woltersdorf, B. Heinrich, Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Phys. Rev. B 69, 188417 (2004)

    Google Scholar 

  53. L. Lei, J. Young, W. Mingzhong, C. Mathieu, M. Hadley, P. Krivosik, N. Mo, Tuning of magnetization relaxation in ferromagnetic thin films through seed layers. Appl. Phys. Lett. 100(2), 022403 (2012)

    Google Scholar 

  54. P. Wigen, M. Roukes, P. Hammel, in Ferromagnetic Resonance Force Microscopy. vol 101, ed. by B. Hillebrands, A. Thiaville, Spin Dynamics in Confined Magnetic Structures III, Topics in Applied Physics, (Springer, Berlin, 2006), pp. 105–136

    Google Scholar 

  55. F. Schreiber, M. Hoffmann, O. Geisau, J. Pelzl, Investigation of the photothermally modulated ferromagnetic resonance signal from magnetostatic modes in yttrium iron garnet films. Appl. Phys. A Mater. Sci. Process. 57, 545 (1993)

    Google Scholar 

  56. R. Meckenstock, Invited review article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range. Rev. Sci. Instrum. 79, 041101 (2008)

    Google Scholar 

  57. H. Mahdjour, W.G. Clark, K. Baberschke, High-sensitivity broad-band microwave spectroscopy with small nonresonant coils. Rev. Sci. Instrum. 57, 1100 (1986)

    Google Scholar 

  58. K.D. Bures, K. Baberschke, S.E. Barnes, Electron-Spin-Resonance insitu with a Josephson tunnel jucnction. J. Magnetism Magn. Mater. 54(Part 3), 1415 (1986)

    Google Scholar 

  59. P. Landeros, D.L. Mills, Spin waves in periodically perturbed films. Phys. Rev. B 85, 054424 (2012)

    Article  ADS  Google Scholar 

  60. F.M. Romer, M. Moller, K. Wagner, L. Gathmann, R. Narkowicz, H. Zahres, B.R. Salles, P. Torelli, R. Meckenstock, J. Lindner, M. Farle, In situ multifrequency ferromagnetic resonance and x-ray magnetic circular dichroism investigations on Fe/GaAs(110): Enhanced g-factor. Appl. Phys. Lett. 100, 092402 (2012)

    Article  ADS  Google Scholar 

  61. S.S. Kalarickal, M. Nan, P. Krivosik, C.E. Patton, Ferromagnetic resonance linewidth mechanisms in polycrystalline ferrites: Role of grain-to-grain and grain-boundary two-magnon scattering processes. Phys. Rev. B 79, 094427 (2009)

    Google Scholar 

  62. A.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions. Nature 438(7066), 339–342 (2005)

    Article  ADS  Google Scholar 

  63. J.C. Sankey, P.M. Braganca, A.G.F. Garcia, I.N. Krivorotov, R.A. Buhrman, D.C. Ralph, Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys Rev Lett 96, 227601 (2006)

    Article  ADS  Google Scholar 

  64. J.N. Kupferschmidt, S. Adam, P.W. Brouwer, Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure. Phys. Rev. B 74(13), 134416 (2006)

    Google Scholar 

  65. A. Alexey, Gerrit E. W. Bauer, A. Brataas, Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures. Phys. Rev. B 75, 014430 (2007)

    Google Scholar 

  66. G.D. Fuchs, J.C. Sankey, V.S. Pribiag, L. Qian, P.M. Braganca, A.G.F. Garcia, E.M. Ryan, Z.-P. Li, O. Ozatay, D.C. Ralph, R.A. Buhrman, Spin-torque ferromagnetic resonance measurements of damping in nanomagnets. Appl. Phys. Lett. 91, 062507 (2007)

    Google Scholar 

  67. W. Chen, J.-M.L. Beaujour, G. de Loubens, A.D. Kent, J.Z. Sun, Spin-torque driven ferromagnetic resonance of co/ni synthetic layers in spin valves. Appl. Phys. Lett. 92, 012507 (2008)

    Article  ADS  Google Scholar 

  68. W. Chen, G. de Loubens, J.-M. L. Beaujour, A.D. Kent, J.Z. Sun, Finite size effects on spin-torque driven ferromagnetic resonance in spin valves with a Co/Ni synthetic free layer. J. Appl. Phys. 103(7), 07A502 (2008)

    Google Scholar 

  69. J.C. Sankey, Y.-T. Cui, J.Z. Sun, J.C. Slonczewski, R.A. Buhrman, D.C. Ralph, Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys. 4, 67–71 (2008)

    Google Scholar 

  70. W. Chen, G. de Loubens, J.-M.L. Beaujour, J.Z. Sun, A.D. Kent, Spin-torque driven ferromagnetic resonance in a nonlinear regime. Appl. Phys. Lett. 95, 172513 (2009)

    Article  ADS  Google Scholar 

  71. W.H. Rippard, A.M. Deac, M.R. Pufall, J.M. Shaw, M.W. Keller, S.E. Russek, G.E.W. Bauer, C. Serpico, Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers. Phys. Rev. B 81, 014426 (2010)

    Google Scholar 

  72. C. Wang, Y.-T. Cui, J.A. Katine, R.A. Buhrman, D.C. Ralph, Time-resolved measurement of spin-transfer-driven ferromagnetic resonance and spin torque in magnetic tunnel junctions. Nat. Phys. 7, 496 (2011)

    Google Scholar 

  73. R.D. McMichael, M.D. Stiles, Magnetic normal modes of nanoelements. J. Appl. Phys. 97, 10J901 (2005)

    Google Scholar 

  74. J.M. Shaw, T.J. Silva, M.L. Schneider, R.D. McMichael, Spin dynamics and mode structure in nanomagnet arrays: effects of size and thickness on linewidth and damping. Phys. Rev. B 79, 184404 (2009)

    Google Scholar 

  75. H.T. Nembach, J.M. Shaw, T.J. Silva, W.L. Johnson, S.A. Kim, R.D. McMichael, P. Kabos, Effects of shape distortions and imperfections on mode frequencies and collective linewidths in nanomagnets. Phys. Rev. B 83, 094427 (2011)

    Google Scholar 

  76. P.W. Anderson, H. Suhl, Instability in the motion of ferromagnets at high microwave power levels. Phys. Rev. 100, 1788 (1955)

    Article  ADS  Google Scholar 

  77. Y.K. Fetisov, C.E. Patton, V.T. Synogach, Nonlinear ferromagnetic resonance and foldover in yttrium iron garnet thin films-inadequacy of the classical model. IEEE Trans. Magn. 35, 4511–4521 (1999)

    Google Scholar 

  78. M.T. Weiss, Microwave and low-frequency oscillation due to resonance instabilities in ferrites. Phys. Rev. Lett. 1, 239–241 (1958)

    Article  ADS  Google Scholar 

  79. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva, Direct-current induced dynamics in \(\text{Co}_{90}\text{Fe}_{10}/\text{Ni}_{80}\text{Fe}_{20}\) point contacts. Phys. Rev. Lett. 92, 027201 (2004)

    Article  ADS  Google Scholar 

  80. W.K. Hiebert, L. Lagae, J. De Boeck, Spatially resolved ultrafast precessional magnetization reversal. Phys. Rev. B 68, 020402(R) (2003)

    Google Scholar 

  81. M. Buess, R. Hoellinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M.R. Scheinfein, D. Weiss, C.H. Back, Fourier transform imaging of spin vortex eigenmodes. Phys. Rev. Lett. 93, 077207 (2004)

    Article  ADS  Google Scholar 

  82. F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A.N. Slavin, V.S. Tiberkevich, A. Bischof, D. Weiss, C.H. Back, Mode degeneracy due to vortex core removal in magnetic disks. Phys. Rev. B 76, 014416 (2007)

    Article  ADS  Google Scholar 

  83. K.Y. Guslienko, A.N. Slavin, V. Tiberkevich, S.-K. Kim, Dynamic origin of azimuthal modes splitting in vortex-state magnetic dots. Phys. Rev. Lett. 101, 247203 (2008)

    Article  ADS  Google Scholar 

  84. M. Covington, T.M. Crawford, G.J. Parker, Time-resolved measurement of propagating spin waves in ferromagnetic thin films. Phys. Rev. Lett. 89, 237202 (2002)

    Article  ADS  Google Scholar 

  85. K. Perzlmaier, G. Woltersdorf, C.H. Back, Observation of the propagation and interference of spin waves in ferromagnetic thin films. Phys. Rev. B 77, 054425 (2008)

    Article  ADS  Google Scholar 

  86. I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, C.H. Back, Comparison of frequency, field, and time domain ferromagnetic resonance methods. J. Mag. Mag. Mat. 307, 148–156 (2006)

    Article  ADS  Google Scholar 

  87. I. Neudecker, K. Perzlmaier, F. Hoffmann, G. Woltersdorf, M. Buess, D. Weiss, C.H. Back, Modal spectrum of permalloy disks excited by in-plane magnetic fields. Phys. Rev. B 73, 134426 (2006)

    Article  ADS  Google Scholar 

  88. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  89. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1 (1996)

    Article  ADS  Google Scholar 

  90. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003)

    Article  ADS  Google Scholar 

  91. I.N. Krivorotov, N.C. Emley, J.C. Sankey, S.I. Kiselev, D.C. Ralph, R.A. Buhrman, Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228 (2005)

    Article  ADS  Google Scholar 

  92. T. Kimura, Y. Otani, J. Hamrle, Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006)

    Article  ADS  Google Scholar 

  93. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced gilbert daming in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002)

    Article  ADS  Google Scholar 

  94. R. Urban, G. Woltersdorf, B. Heinrich, Gilbert damping in single and multilayer ultrathin films: Role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001)

    Article  ADS  Google Scholar 

  95. B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, G.E. Bauer, Dynamic exchange coupling in magnetic bilayers. Phys. Rev. Lett. 90, 187601 (2003)

    Article  ADS  Google Scholar 

  96. M.D. Stiles, A. Zangwill, Anatomy of spin-transfer torque. Phys. Rev. B 66(1), 014407 (2002)

    Article  ADS  Google Scholar 

  97. O. Mosendz, G. Woltersdorf, B. Kardasz, B. Heinrich, C.H. Back, Magnetization dynamics in the presence of pure spin currents in magnetic single and double layers in spin ballistic and diffusive regimes. Phys. Rev. B 79, 224412 (2009)

    Article  ADS  Google Scholar 

  98. K. Khazen, H.J. von Bardeleben, J.L. Cantin, L. Thevenard, L. Largeau, O. Mauguin, A. Lemaître, Ferromagnetic resonance of \(\text{Ga}_{0.93}\text{Mn}_{0.07}\)As thin films with constant Mn and variable free-hole concentrations. Phys. Rev. B 77, 165204 (2008)

    Google Scholar 

  99. C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M.S. Brandt, S.T.B. Goennenwein, \(\text{Ga}_{1-x} \text{Mn}_{x}\)As /piezoelectric actuator hybrids: A model system for magnetoelastic magnetization manipulation. Phys. Rev. B 78, 045203 (2008)

    Article  ADS  Google Scholar 

  100. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, Magnetization vector manipulation by electric fields. Nature 455, 515 (2008)

    Article  ADS  Google Scholar 

  101. F. Hoffmann, G. Woltersdorf, W. Wegscheider, A. Einwanger, D. Weiss, C.H. Back, Mapping the magnetic anisotropy in (Ga, Mn)As nanostructures. Phys. Rev. B 80, 054417 (2009)

    Article  ADS  Google Scholar 

  102. J. Wenisch, C. Gould, L. Ebel, J. Storz, K. Pappert, M.J. Schmidt, C. Kumpf, G. Schmidt, K. Brunner, L.W. Molenkamp, Control of magnetic anisotropy in (Ga, Mn)As by lithography-induced strain relaxation. Phys. Rev. Lett. 99, 077201 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to the memory of Douglas L. Mills who lost his long battle with leukemia during the writing of this chapter. We thank all former and present co-workers—many of them appearing as co-authors of our publications—who have contributed to the results presented here. This work was supported by the DFG, Sfb 491. G.W. acknowledges financial support from the DFG through SFB 689 and project WO1422/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Farle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farle, M., Silva, T., Woltersdorf, G. (2013). Spin Dynamics in the Time and Frequency Domain. In: Zabel, H., Farle, M. (eds) Magnetic Nanostructures. Springer Tracts in Modern Physics, vol 246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32042-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32042-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32041-5

  • Online ISBN: 978-3-642-32042-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics