Skip to main content

Three Step Dissociation and Covalent Stabilization of Phycobilisome

  • Conference paper
Photosynthesis Research for Food, Fuel and the Future

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Phycobilisomes are large, light harvesting complexes that extend the spectral range of photosynthesis of cyanobacteria by capturing visible light (470–660 nm) and transfer the energy to Photosystem II and Photosystem I. These complexes are soluble complexes that attach to the thylakoid membrane and act as antennae for both PSII and PSI. Phycobilisomes utilize up to 1,500 linear tetrapyrrole chromophores or bilins that are covalently attached to the a and β subunits found in either the rod subunits or the core complexes. Within these enormous structures are pigment-containing linker proteins that facilitate the very rapid and efficient downhill energy transfer from PE → PC → APC → Chl. Interestingly, efficient energy transfer in vitro has been observed only in the presence of very high phosphate (0.7–1.0 mol). We have investigated the mechanism and kinetics of how these complexes dissociate during dilution from the high phosphate buffer. This disassembly process has been followed using fluorescence spectroscopy, differential scanning calorimetry, circular dichroism, density gradient centrifugation, and Western blotting. This analysis has lead to a 3-step model of how the PBS disassembles. To facilitate the use of these large light harvesting complexes in applied photosynthesis, we have also explored covalent method for stabilization of the phycobilisome subunit interactions in aqueous, low salt conditions. Using the stabilization condition we are now beginning to determine if the light harvesting capabilities can be used to drive charge separation in Photosystem I for either photovoltaic or hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Capuano V, Braux AS, Tandeau de Marsac N, Houmard J (1991) The “Anchor Polypeptide” of Cyanobacterial Phycobilisomes. Molecular Characterization of the Synechococcus sp. PCC 6301 Apce Gene. J Biol Chem 266: 7239–7247

    PubMed  CAS  Google Scholar 

  • Das R, Kiley PJ, Segal M, Norville J, Yu AA, Wang LY, Trammell SA, Reddick LE, Kumar R, Stellacci F, Lebedev N, Schnur J, Bruce BD, Zhang SG, Baldo M (2004) Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices. Nano Letters 4: 1079–1083

    Article  CAS  Google Scholar 

  • De Marsac NT, Cohen-bazire G (1977) Molecular Composition of Cyanobacterial Phycobilisomes. Proc Natl Acad Sci U S A 74: 1635–1639

    Article  PubMed  Google Scholar 

  • Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM (2006) Biochemical Bases of Type IV Chromatic Adaptation in Marine Synechococcus spp. J Bacteriol 188: 3345–3356

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Lipschultz CA (1972) Phycobilisomes of Porphyridium Cruentum. The Journal of Cell Biology 54: 313–324

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Lipschultz CA, Grabowski J, Zimmerman BK (1979) Phycobilisomes from Blue-Green and Red Algae: Isolation Criteria and Dissociation Characteristics. Plant Physiol. 63: 615–620

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Lipschultz CA, Zilinskas B (1976) Further Evidence for a Phycobilisome Model from Selective Dissociation, Fluorescence Emission, Immunoprecipitation, and Electron Microscopy. Biochimica et Biophysica Acta (BBA) — Bioenergetics 430: 375–388

    Article  CAS  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: Structure and Dynamics. Annu Rev Microbiol 36: 173–198

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1985) Light Harvesting by Phycobilisomes. Annu Rev Biophys Biophys Chem 14: 47–77

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1988) Phycobiliproteins. Methods Enzymol 167: 291–303

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1988) Phycobilisomes. Methods Enzymol 167: 304–312

    Article  CAS  Google Scholar 

  • Glazer AN (1989) Light Guides. Directional Energy Transfer in a Photosynthetic Antenna. J Biol Chem 264: 1–4

    PubMed  CAS  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins — a Family of Valuable, Widely Used Fluorophores. Journal of Applied Phycology 6: 105–112

    Article  CAS  Google Scholar 

  • Glazer AN, Fang S (1973) Chromophore Content of Blue-Green Algal Phycobiliproteins. J Biol Chem 248: 659–662

    PubMed  CAS  Google Scholar 

  • Glazer AN, Stryer L (1983) Fluorescent Tandem Phycobiliprotein Conjugates. Emission Wavelength Shifting by Energy Transfer. Biophys J 43: 383–386

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, Williams RC, Yamanaka G, Schachman HK (1979) Characterization of Cyanobacterial Phycobilisomes in Zwitterionic Detergents. Proc Natl Acad Sci U S A 76: 6162–6166

    Article  PubMed  CAS  Google Scholar 

  • Glick RE, Zilinskas BA (1982) Role of the Colorless Polypeptides in Phycobilisome Reconstitution from Separated Phycobiliproteins. Plant Physiol 69: 991–997

    Article  PubMed  CAS  Google Scholar 

  • Gray BH, Gantt E (1975) Spectral Properties of Phycobilisomes and Phycobiliproteins from the Bluegreen Alga-Nostoc SP.*. Photochemistry and Photobiology 21: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Kehoe DM, Grossman AR (1994) Complementary Chromatic Adaptation: Photoperception to Gene Regulation. Semin Cell Biol 5: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Kume N, Katoh T (1982) Dissociation Kinetics of Anabaena Phycobilisomes. Plant and Cell Physiology 23: 803–812

    CAS  Google Scholar 

  • Lundell DJ, Williams RC, Glazer AN (1981) Molecular Architecture of a Light-Harvesting Antenna. In Vitro Assembly of the Rod Substructures of Synechococcus 6301 Phycobilisomes. J Biol Chem 256: 3580–3592

    PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial Phycobilisomes. J Struct Biol 124: 311–334

    Article  PubMed  CAS  Google Scholar 

  • MacColl R, Williams EC, Eisele LE, McNaughton P (1994) Chromophore Topography and Exciton Splitting in Phycocyanin 645. Biochemistry 33: 6418–6423

    Article  PubMed  CAS  Google Scholar 

  • Miskiewicz E, Ivanov AG, Huner NPA (2002) Stoichiometry of the Photosynthetic Apparatus and Phycobilisome Structure of the Cyanobacterium Plectonema Boryanum UTEX 485 Are Regulated by Both Light and Temperature. Plant Physiol. 130: 1414–1425

    Article  PubMed  CAS  Google Scholar 

  • Nomsawai P, De Marsac NT, Thomas JC, Tanticharoen M, Cheevadhanarak S (1999) Light Regulation of Phycobilisome Structure and Gene Expression in Spirulina Platensis C1 (Arthrospira sp. PCC 9438). Plant and Cell Physiology 40: 1194–1202

    Article  CAS  Google Scholar 

  • Ong LJ, Glazer AN (1991) Phycoerythrins of Marine Unicellular Cyanobacteria. I. Bilin Types and Locations and Energy Transfer Pathways in Synechococcus spp. Phycoerythrins. J Biol Chem 266: 9515–9527

    PubMed  CAS  Google Scholar 

  • Piven I, Ajlani G, Sokolenko A (2005) Phycobilisome Linker Proteins Are Phosphorylated in Synechocystis sp. PCC 6803. J Biol Chem 280: 21667–21672

    Article  PubMed  CAS  Google Scholar 

  • Porter G, Tredwell CJ, Searle GFW, Barber J (1978) Picosecond Time-Resolved Energy Transfer in Porphyridium Cruentum. Part I. In the Intact Alga. Biochimica et Biophysica Acta (BBA) — Bioenergetics 501: 232–245

    Article  CAS  Google Scholar 

  • Rigbi M, Rosinski J, Siegelman HW, Sutherland JC (1980) Cyanobacterial Phycobilisomes: Selective Dissociation Monitored by Fluorescence and Circular Dichroism. Proc Natl Acad Sci U S A 77: 1961–1965

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Lester Packer ANG (1988) Isolation and Purification of Cyanobacteria. In Methods Enzymol, Vol Volume 167. Academic Press, pp. 3–27

    Google Scholar 

  • Ritz M, Thomas JC, Spilar A, Etienne AL (2000) Kinetics of Photoacclimation in Response to a Shift to High Light of the Red Alga Rhodella Violacea Adapted to Low Irradiance. Plant Physiol. 123: 1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Searle GFW, Barber J, Porter G, Tredwell CJ (1978) Picosecond Time-Resolved Energy Transfer in Porphyridium Cruentum. Part II. In the Isolated Light Harvesting Complex (Phycobilisomes). Biochimica et Biophysica Acta (BBA) Bioenergetics 501: 246–256

    Article  CAS  Google Scholar 

  • Sidler W (1994) Phycobilisome and Phycobiliprotein Structures. In: DA Bryant (ed.), The Biology of Cyanobacteria. Kluwer Academic Publishers: Dortrecht, Netherlands, pp. 139–216

    Chapter  Google Scholar 

  • Six C, Thomas JC, Thion L, Lemoine Y, Zal F, Partensky F (2005) Two Novel Phycoerythrin-Associated Linker Proteins in the Marine Cyanobacterium Synechococcus sp. Strain WH8102. J Bacteriol 187: 1685–1694

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV, Glazer AN (1990) Phycobiliprotein Methylation. Effect of the Gamma-N-Methylasparagine Residue on Energy Transfer in Phycocyanin and the Phycobilisome. J Mol Biol 214: 787–796

    Article  PubMed  CAS  Google Scholar 

  • Wilbanks SM, Glazer AN (1993) Rod Structure of a Phycoerythrin II-Containing Phycobilisome. I. Organization and Sequence of the Gene Cluster Encoding the Major Phycobiliprotein Rod Components in the Genome of Marine Synechococcus sp. WH8020. J Biol Chem 268: 1226–1235

    PubMed  CAS  Google Scholar 

  • Yamanaka G, Glazer AN, Williams RC (1978) Cyanobacterial Phycobilisomes. Characterization of the Phycobilisomes of Synechococcus sp. 6301. Journal of Biological Chemistry 253: 8303–8310

    PubMed  CAS  Google Scholar 

  • Yamanaka G, Lundell DJ, Glazer AN (1982) Molecular Architecture of a Light-Harvesting Antenna. Isolation and Characterization of Phycobilisome Subassembly Particles. J Biol Chem 257: 4077–4086

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q. (2013). Three Step Dissociation and Covalent Stabilization of Phycobilisome. In: Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32034-7_34

Download citation

Publish with us

Policies and ethics