Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 2153 Accesses

Abstract

Cyanophages, viruses infecting cyanobacteria, play key roles in the life cycle, biodiversity, evolution, and ecological modulations of their hosts. Accumulating evidence that a variety of photosynthesis-related and other host-like genes are found in genomes of cyanophages underscores the close relationship cyanophages have with the gene pools of their hosts during the infection cycle. An hypothesis follows that cyanophages are excellent mediators and innovators in lateral gene transfer and gene birth events. Cyanophages of the Myoviridae family appear to incorporate full-length tRNA genes into their genomes apart from host-like genes. We evaluated the possible effect of those tRNAs on the expression of cyanophages and cyanobacterial genes using the tRNA Adaptation Index, which measures the extent a given pool of tRNAs affects the translation of genes taking into account their codon usage (dos Reis, Savva et al., 2004). We show that, using the self-born tRNAs, myoviruses can efficiently harness the translation machinery of their hosts while maintaining genomes with considerabley lower GC-contents. In particular, the myoviral psbA and psbD genes, encoding for the D1 and D2 core proteins of the photosystem II, respectively, are seen to be better adapted to the addition of the viral tRNAs, when compared with their cyanobacterial counterparts from which they originated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailly-Bechet M, M Vergassola, et al. (2007) Causes for the Intriguing Presence of tRNAs in Phages. Genome Research 17(10): 1486–1495

    Article  PubMed  CAS  Google Scholar 

  • Bragg JG, SW Chisholm (2008) Modeling the Fitness Consequences of a Cyanophage-Encoded Photosynthesis Gene. PLoS ONE 3(10): e3550

    Article  PubMed  Google Scholar 

  • Campbell AM (1992) Chromosomal Insertion Sites for Phages and Plasmids. J Bacteriol 174(23): 7495–7499

    PubMed  CAS  Google Scholar 

  • Canchaya C, G Fournous, et al. (2004) The Impact of Prophages on Bacterial Chromosomes. Molecular Microbiology 53(1): 9–18

    Article  PubMed  CAS  Google Scholar 

  • Cheetham BF, ME Katz (1995) A Role for Bacteriophages in the Evolution and Transfer of Bacterial Virulence Determinants. Molecular Microbiology 18(2): 201–208

    Article  PubMed  CAS  Google Scholar 

  • Chenard C, CA Suttle (2008) Phylogenetic Diversity of Sequences of Cyanophage Photosynthetic Gene psbA in Marine and Freshwaters. Appl Environ Microbiol 74(17): 5317–5324

    Article  PubMed  CAS  Google Scholar 

  • Dammeyer T, SC Bagby, et al. (2008) Efficient Phage-Mediated Pigment Biosynthesis in Oceanic Cyanabacteria. Current Biology 18(6): 442–448

    Article  PubMed  CAS  Google Scholar 

  • Daniel V, S Sarid, et al. (1970) Bacteriophage Induced Transfer RNA in Escherichia Coli. New Transfer RNA Molecules Are Synthesized on the Bacteriophage Genome. Science 167(926): 1682–1688

    Article  PubMed  CAS  Google Scholar 

  • dos Reis M, R Savva, et al. (2004) Solving the Riddle of Codon Usage Preferences: a Test for Translational Selection. Nucleic Acids Research 32(17): 5036–5044

    Article  PubMed  CAS  Google Scholar 

  • Dufresne A, L Garczarek, et al. (2005) Accelerated Evolution Associated with Genome Reduction in a Free-Living Prokaryote. Genome Biol 6(2): R14

    Article  PubMed  Google Scholar 

  • Dufresne A, M Ostrowski, et al. (2008) Unraveling the Genomic Mosaic of a Ubiquitous Genus of Marine Cyanobacteria. Genome Biol 9(5): R90

    Article  PubMed  Google Scholar 

  • Kettler GC, AC Martiny, et al. (2007) Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus. Plos Genetics 3(12): 2515–2528

    Article  CAS  Google Scholar 

  • Kunisawa T (1992) Synonymous Codon Preferences in Bacteriophage T4: a Distinctive Use of Transfer RNAs from T4 and from Its Host Escherichia Coli. J Theor Biol 159(3): 287–298

    Article  PubMed  CAS  Google Scholar 

  • Kunisawa T (2000) Functional Role of Mycobacteriophage Transfer RNAs. Journal of Theoretical Biology 205(1): 167–170

    Article  PubMed  CAS  Google Scholar 

  • Lindell D, MB Sullivan, et al. (2004) Transfer of Photosynthesis Genes to and from Prochlorococcus Viruses. Proceedings of the National Academy of Sciences of the United States of America 101(30): 11013–11018

    Article  PubMed  CAS  Google Scholar 

  • Millard A, MRJ Clokie, et al. (2004) Genetic Organization of the psbAD Region in Phages Infecting Marine Synechococcus Strains. Proceedings of the National Academy of Sciences of the United States of America 101(30): 11007–11012

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, JG Lawrence,et al. (2000) Lateral Gene Transfer and the Nature of Bacterial Innovation. Nature 405(6784): 299–304

    Article  PubMed  CAS  Google Scholar 

  • Rocap G, DL Distel, et al. (2002) Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S–23S Ribosomal DNA Internal Transcribed Spacer Sequences. Applied and Environmental Microbiology 68(3): 1180–1191

    Article  PubMed  CAS  Google Scholar 

  • Sandaa RA, A Larsen (2006) Seasonal Variations in Virus-Host Populations in Norwegian Coastal Waters: Focusing on the Cyanophage Community Infecting Marine Synechococcus spp. Appl Environ Microbiol 72(7): 4610–4618

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MB, ML Coleman, et al. (2005) Three Prochlorococcus Cyanophage Genomes: Signature Features and Ecological Interpretations. Plos Biology 3(5): 790–806

    Article  CAS  Google Scholar 

  • Sullivan MB, KH Huang, et al. Genomic Analysis of Oceanic Cyanobacterial Myoviruses Compared with T4-Like Myoviruses from Diverse Hosts and Environments. Environ Microbiol

    Google Scholar 

  • Sullivan MB, D Lindell, et al. (2006) Prevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts. Plos Biology 4(8): 1344–1357

    Article  CAS  Google Scholar 

  • Tan YL, KB Zhang, et al. (2007) Whole Genome Sequencing of a Novel Temperate Bacteriophage of P-Aeruginosa: Evidence of tRNA Gene Mediating Integration of the Phage Genome into the Host Bacterial Chromosome. Cellular Microbiology 9(2): 479–491

    Article  PubMed  CAS  Google Scholar 

  • Wang K, F Chen (2008) Prevalence of Highly Host-Specific Cyanophages in the Estuarine Environment. Environ Microbiol 10(2): 300–312

    Article  PubMed  CAS  Google Scholar 

  • Weiss SB, WT Hsu, et al. (1968) Transfer Rna Coded by T4 Bacteriophage Genome. Proceedings of the National Academy of Sciences of the United States of America 61(1): 114

    Article  PubMed  CAS  Google Scholar 

  • Wilson JH (1973) Function of Bacteriophage-T4 Transfer-Rnas. Journal of Molecular Biology 74(4): 753

    Article  PubMed  CAS  Google Scholar 

  • Zeidner G, JP Bielawski, et al. (2005) Potential Photosynthesis Gene Recombination between Prochlorococcus and Synechococcus Via Viral Intermediates. Environmental Microbiology 7(10): 1505–1513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scherz Avigdor .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kerena, LW., Asaf, C., Avigdor, S., Yitzhak, P., Itay, F. (2013). The Role of tRNAs in Cyanophages. In: Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32034-7_147

Download citation

Publish with us

Policies and ethics