Resolving Plural Ambiguities by Type Reconstruction

  • Hans Leiß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7395)


We describe a type reconstruction algorithm for a fragment of natural language. It is based on Hindley’s algorithm for simple types, but extends it with subtyping and overloading. We extend one of Montague’s fragments of English by plural noun phrases which may have several types and by overloaded verbs to allow for distributed and non-distributed readings of noun phrases and verb arguments. We demonstrate how type reconstruction can select suitable meanings of subject noun phrases depending on the meaning of verb phrases. Thus, type reconstruction enables us to handle some violations of Frege’s compositionality principle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaves, R.P.: DRT and underspecification of plural ambiguities. In: Bunt, H., Geertzen, J., Thijse, E. (eds.) Proceedings of the 6th IWCS, pp. 78–89 (2005)Google Scholar
  2. 2.
    Coppo, M., Giannini, P.: Principal types and unification for simple intersection type systems. Information and Computation 122(1), 70–96 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cramer, M., Schröder, B.: Interpreting plurals in the Naproche CNL (2010),
  4. 4.
    Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal expressions and the concept of reciprocity. Linguistics and Philosophy 21(2), 159–210 (1998)CrossRefGoogle Scholar
  5. 5.
    Franconi, E.: A treatment of plurals and plural quantifications based on a theory of collections. Minds and Machines, special issue on Knowledge Representation for Natural Language Processing 3(4), 453–474 (1993)Google Scholar
  6. 6.
    Frank, A., Reyle, U.: Principle based semantics for HPSG. In: Proceedings of the 6th Meeting of the Association for Computational Linguistics, European Chapter, pp. 9–16 (1995)Google Scholar
  7. 7.
    Hindley, R.: The principal type-scheme of an object in combinatory logic. Transactions of the American Mathematical Society 146, 29–60 (1969)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer (1983)Google Scholar
  9. 9.
    Keenan, E.L., Faltz, L.M.: Boolean Semantics for Natural Language. D. Reidel, Dordrecht (1985)zbMATHGoogle Scholar
  10. 10.
    Link, G.: Algebraic Semantics for Language and Philosophy. CSLI Publications (1989)Google Scholar
  11. 11.
    Mitchell, J.: Type infernce with simple subtypes. Journal of Functional Programming 1, 245–285 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Montague, R.: The proper treatment of quantification in ordinary english. In: Thomason, R. (ed.) Formal Philosophy. Selected Papers of Richard Montague. Yale Univ. Press (1974)Google Scholar
  13. 13.
    Sabato, S., Winter, Y.: From semantic restrictions to reciprocal meanings. In: Rogers, J. (ed.) Proceedings FG-MoL 2005. 10th Conference on Formal Grammar and 9th Meeting on Mathematics of Language. CSLI online publications (2005)Google Scholar
  14. 14.
    Smith, G.S.: Principal type schemes for functional programs with overloading and subtyping. Science of Computer Programming 23, 197–226 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Tiuryn, J., Wand, M.: Type reconstruction with recursive types and atomic subtyping. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 686–701. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans Leiß
    • 1
  1. 1.Centrum für Informations- und SprachverarbeitungUniversität MünchenMünchenGermany

Personalised recommendations