Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

Annual Cryptology Conference

CRYPTO 2012: Advances in Cryptology – CRYPTO 2012 pp 850–867Cite as

  1. Home
  2. Advances in Cryptology – CRYPTO 2012
  3. Conference paper
Homomorphic Evaluation of the AES Circuit

Homomorphic Evaluation of the AES Circuit

  • Craig Gentry18,
  • Shai Halevi18 &
  • Nigel P. Smart19 
  • Conference paper
  • 7409 Accesses

  • 338 Citations

  • 4 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7417)

Abstract

We describe a working implementation of leveled homomorphic encryption (without bootstrapping) that can evaluate the AES-128 circuit in three different ways. One variant takes under over 36 hours to evaluate an entire AES encryption operation, using NTL (over GMP) as our underlying software platform, and running on a large-memory machine. Using SIMD techniques, we can process over 54 blocks in each evaluation, yielding an amortized rate of just under 40 minutes per block. Another implementation takes just over two and a half days to evaluate the AES operation, but can process 720 blocks in each evaluation, yielding an amortized rate of just over five minutes per block. We also detail a third implementation, which theoretically could yield even better amortized complexity, but in practice turns out to be less competitive.

For our implementations we develop both AES-specific optimizations as well as several “generic” tools for FHE evaluation. These last tools include (among others) a different variant of the Brakerski-Vaikuntanathan key-switching technique that does not require reducing the norm of the ciphertext vector, and a method of implementing the Brakerski-Gentry-Vaikuntanathan modulus-switching transformation on ciphertexts in CRT representation.

Keywords

  • Evaluation Representation
  • Homomorphic Encryption
  • Round Function
  • Noise Magnitude
  • Homomorphic Evaluation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Boyar, J., Peralta, R.: A depth-16 circuit for the AES S-box (2011) (manuscript), http://eprint.iacr.org/2011/332

  2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP (2012) (manuscript), http://eprint.iacr.org/2012/078

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS 2012 (2012), http://eprint.iacr.org/2011/277

  4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS 2011. IEEE Computer Society (2011)

    Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  6. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Coron, J.-S., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Damgård, I., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 367–374. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  10. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012), Full version at http://eprint.iacr.org/2011/566

    CrossRef  Google Scholar 

  12. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)

    Google Scholar 

  13. Orlandi, C., Nielsen, J.B., Nordholt, P.S., Sheshank, S.: A new approach to practical active-secure two-party computation (2011) (manuscript)

    Google Scholar 

  14. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: CCSW, pp. 113–124. ACM (2011)

    Google Scholar 

  15. Lòpez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC. ACM (2012)

    Google Scholar 

  16. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  17. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  18. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  19. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  20. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011), Manuscript at http://eprint.iacr.org/2011/133

Download references

Author information

Authors and Affiliations

  1. IBM Research, New Delhi, India

    Craig Gentry & Shai Halevi

  2. University of Bristol, Bristol, UK

    Nigel P. Smart

Authors
  1. Craig Gentry
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Shai Halevi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nigel P. Smart
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Calgary, 2500 University Drive NW, T2N 1N4, Calgary, AB, Canada

    Reihaneh Safavi-Naini

  2. Department of Computer Science, University of Boston, 111 Cummington Street, 02215, Boston, MA, USA

    Ran Canetti

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 International Association for Cryptologic Research 2012

About this paper

Cite this paper

Gentry, C., Halevi, S., Smart, N.P. (2012). Homomorphic Evaluation of the AES Circuit. In: Safavi-Naini, R., Canetti, R. (eds) Advances in Cryptology – CRYPTO 2012. CRYPTO 2012. Lecture Notes in Computer Science, vol 7417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32009-5_49

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-32009-5_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32008-8

  • Online ISBN: 978-3-642-32009-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

34.228.52.21

Not affiliated

Springer Nature

© 2023 Springer Nature