Skip to main content

A Preliminary Study for H\(_\infty \) Control of Parallel Cable-Driven Manipulators

  • Chapter
  • First Online:
Cable-Driven Parallel Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 12))

Abstract

This paper reports preliminary investigations for H\(_\infty \) control of cable-driven parallel robot. This methodology specially suits for multi-input multi-output systems including flexible modes, which is the case of cable robots with flexible cables. A nonlinear model is first developed accounting for flexible cables for the case where actuators are speed controlled. A first method based on a rigid model is proposed as an adaptation for speed-controlled actuators of the well-known Jacobian-based method. A low-pass filter is tuned in order to increase the reachable bandwidth. The H\(_\infty \) controller is derived from a linear dynamic model. One interest is that one single controller manages both the position of the end-effector and the cable tension. The simulation results show that improvements are possible in the bandwidth thanks to the H\(_\infty \) control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let \(T_{zv}(s)\) denote the transfer of the system with input \(v\) and output \(z\). The interconnection of \(G_e(s)\) and \(K(s)\) presented in Fig. 6 is \(T_{\tilde{z} \tilde{v}}(s) = \text{ lft}(G_e(s),K(s))\).

  2. 2.

    The H\(_\infty \) norm \(\left\Vert G(s) \right\Vert_\infty \) of transfer \(G(s)\) is the maximum singular value of \(G(j \omega )\) over all the frequencies \(\omega \in \mathbb R ^+\). For single-input single-output systems, it reduced to the maximum gain.

  3. 3.

    The scheme of Fig. 7 is equivalent to the scheme of Fig. 6 by choosing \(\tilde{v} = r\), \(\tilde{z} = \left[\begin{array}{ll} e^\text{ T}&u^\text{ T}\end{array}\right]^\text{ T}\), \(W_i(s) = \mathbb I _4\) and \(W_o(s) = \text{ diag}\{W_1(s), W_2(s)\}\).

References

  1. Abdelaziz, S., Esteveny, L., Renaud, P., Bayle, B., Barbé, L., de Mathelin, M., Gangi, A.: Design considerations for a novel mri compatible manipulator for prostate cryoablation. Int. J. Comput. Assist. Radiol. Surg. 6(6), 811–819 (2011)

    Google Scholar 

  2. Alikhani, A., Vali, M.: Modeling and robust control of a new large scale suspended cable-driven robot under input constraint. In: International Conference on Ubiquitous Robots and Ambiant Intelligence, Incheon, (2011)

    Google Scholar 

  3. Banavar, R., Dominic, P.: An LQG/\(\text{H}_\infty \) controller for a flexible manipulator. IEEE Trans. Control Syst. Technol. 3, 409–416 (1995)

    Google Scholar 

  4. Burke, J.V., Henrion, D., Lewis, A.S., Overton, M.L.: HIFOO—a Matlab package for fixed-order controller design and h-infinity optimization. In: IFAC Symposium on Robust Control Design, Toulouse, (2006). http://www.cs.nyu.edu/overton/software/hifoo/

  5. Cuvillon, L., Laroche, E., Gangloff, J., de Mathelin, M.: A multivariable methodology for fast visual servoing of flexible manipulators moving in a restricted workspace. Adv. Robotics. doi:10.1080/01691864.2012.685230

  6. Dallej, T., Gouttefarde, M., Andreff, N., Michelin, M., Martinet, P.: Towards vision-based control of cable-driven parallel robots. In: International Conference on Intelligent Robots and Systems. San Francisco, (2011)

    Google Scholar 

  7. Diao, X., Ma, O.: Vibration analysis of cable-driven parallel manipulators. Multibody Syst. Dyn. 21, 347–360 (2009)

    Article  MATH  Google Scholar 

  8. Doyle, J., Glover, K., Khargonekar, P., Francis, B.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)

    Google Scholar 

  9. Duc, G., Font, S.: Commande \(\text{ H}_\infty \) et \(\mu \)-analyse. Hermes Science Publications, Paris (1999)

    Google Scholar 

  10. Gahinet, P., Apkarian, P.: A linear matrix inequality approach to \(\text{ H}_\infty \) control. Int. J. Robust Nonlin. Control 4(4), 421–448 (1994)

    Google Scholar 

  11. Koç, H., Knittel, D., de Mathelin, M.: Modeling and robust control of winding systems for elastic webs. IEEE Trans. on Control Syst. Technol. 10, 197–208 (2002)

    Article  Google Scholar 

  12. Korayem, M., Bamdad, M., Saadat, M.: Workspace analysis of cable-suspended robots with elastic cable. In: IEEE International Conference Robotics and Biomimetics, Sanya, pp. 1942–1947 (2007). doi:10.1109/ROBIO.2007.4522464

  13. Kozak, K., Zhou, Q., Wang, J.: Static analysis of cable-driven manipulators with non-negligible cable mass. IEEE Trans. Robot. 22(3), 425–433 (2006). doi:10.1109/TRO.2006.870659

    Google Scholar 

  14. Ming, A., Higuchi, T.: Study on multiple degree-of-freedom positioning mechanism using wire-concept, design and control (part 1). Int. J. Jpn. Soc. Precis. 28(2), 131–138 (1994)

    Google Scholar 

  15. Pham, C.B., Yeo, S.H., Yang, G., Chen, I.M.: Workspace analysis of fully restrained cable-driven manipulators. Robot. Auton. Syst. 57(9), 901–912 (2009). doi:10.1016/j.robot.2009.06.004

  16. Simoes, A., Apkarian, P., Noll, D.: Nonsmooth multi-objective synthesis with applications. Control Eng. Pract. 11(17), 1338–1348 (2009)

    Article  Google Scholar 

  17. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Wiley, Chichester (1996)

    Google Scholar 

  18. Trevisani, A.: Underconstrained planar cable-direct-driven robots: a trajectory planning method ensuring positive and bounded cable tensions. Mechatronics 20, 113–127 (2010)

    Article  Google Scholar 

  19. Williams, R., Galina, P.: Translational planar cable-direct-driven robots. J. Intel. Robot. Sys. 37, 69–96 (2003)

    Article  Google Scholar 

  20. Xianqiang, Y., Weihai, C., Su, Y., Wei, X.: Dynamic control of a 3-dof cable-driven robot based on backstepping technique. In: IEEE Conference on Industrial Electronics and Applications, Beijing, (2011)

    Google Scholar 

  21. Zames, G., Francis, B.: Feedback, minimax sensitivity, and optimal robustness. IEEE Trans. Autom. Control 28(5), 585–601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zi, B., Duan, B., Du, J., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18, 1–12 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Laroche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laroche, E., Chellal, R., Cuvillon, L., Gangloff, J. (2013). A Preliminary Study for H\(_\infty \) Control of Parallel Cable-Driven Manipulators. In: Bruckmann, T., Pott, A. (eds) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31988-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31988-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31987-7

  • Online ISBN: 978-3-642-31988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics