Skip to main content

Feasible Kinematic Sensitivity in Cable Robots Based on Interval Analysis

  • Chapter
  • First Online:
Cable-Driven Parallel Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 12))

Abstract

The kinematic sensitivity has been recently proposed as a unit-consistent performance index to circumvent several shortcomings of some notorious indices such as dexterity. This paper presents a systematic interval approach for computing an index by which two important kinematic properties, namely feasible workspace and kinematic sensitivity, are blended into each other. The proposed index may be used to efficiently design different parallel mechanisms, and cable driven robots. By this measure, and for parallel manipulators, it is possible to visualize constant orientation workspace of the mechanism where the kinematic sensitivity is less than a desired value considered by the designer. For cable driven redundant robots, the controllable workspace is combined with the desired kinematic sensitivity property, to determine the so-called feasible kinematic sensitivity workspace of the robot. Three case studies are considered for the development of the idea and verification of the results, through which a conventional planar parallel manipulator, a redundant one and a cable driven robot is examined in detail. Finally, the paper provides some hints for the optimum design of the mechanisms under study by introducing the concept of minimum feasible kinematic sensitivity covering the whole workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and throughout this paper, R and P stands respectively for a revolute and prismatic joint where the underlined joint is actuated.

References

  1. Su, Y., Duan, B., Nan, R., Peng, B.: Development of a large parallel-cable manipulator for the feed-supporting system of a next-generation large radio telescope. J. Rob. Syst. 18(11), 633–643 (2001)

    Article  MATH  Google Scholar 

  2. Dominjon, L., Perret, J., Lécuyer, A.: Novel devices and interaction techniques for human-scale haptics. Visual Comput. 23(4), 257–266 (2007)

    Article  Google Scholar 

  3. Geng, Z., Haynes, L.: Kinematic configuration of a stewart platform and its application to six degree of freedom pose measurements. Rob. Comput. Integr. Manuf. 11(1), 23–34 (1994)

    Article  Google Scholar 

  4. Tadokoro, S., Verhoeven, R., Hiller, M., Takamori, T.: A portable parallel manipulator for search and rescue at large-scale urban earthquakes and an identification algorithm for the installation in unstructured environments. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS’99), vol. 2, pp. 1222–1227 (1999).

    Google Scholar 

  5. Williams II, R., Albus, J., Bostelman, R.: 3D cable-based cartesian metrology system. J. Rob. Syst. 21(5), 237–257 (2004)

    Article  MATH  Google Scholar 

  6. Rosati, G., Gallina, P., Masiero, S.: Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 560–569 (2007)

    Article  Google Scholar 

  7. Morizono, T., Kurahashi, K., Kawamura, S.: Realization of a virtual sports training system with parallel wire mechanism. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’ 97), vol. 4, pp. 3025–3030 (1997).

    Google Scholar 

  8. Higuchi, T., Ming, A., Jiang-Yu, J.: Application of multi-dimensional wire cranes in construction. In: Proceedings of the 5th International Symposium on Robotics in, Construction (ISRC88), pp. 661–668 (1988).

    Google Scholar 

  9. Hamid, S., Simaan, N.: Design and synthesis of wire-actuated universal-joint wrists for surgical applications. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’09), pp. 1807–1813 (2009).

    Google Scholar 

  10. Ebert-Uphoff, I., Voglewede, P.: On the connections between cable-driven robots, parallel manipulators and grasping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04), vol. 5, pp. 4521–4526 (2004).

    Google Scholar 

  11. Barrette, G., Gosselin, C.: Determination of the dynamic workspace of cable-driven planar parallel mechanisms. J. Mech. Des. 127, 242 (2005)

    Article  Google Scholar 

  12. Fattah, A., Agrawal, S., et al.: On the design of cable-suspended planar parallel robots. J. Mech. Des. 127, 1021 (2005)

    Article  Google Scholar 

  13. Verhoeven, R., Hiller, M.: Estimating the controllable workspace of tendon-based stewart platforms. Advances in Robot Kinematics, pp. 277–284. Kluwer Academic Publishers, Portoroz (2000).

    Google Scholar 

  14. Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Proceedings of the First International Symposium Robotics Research, pp. 735–747. MIT Press Cambridge, MA (1984).

    Google Scholar 

  15. Salisbury, J., Craig, J.: Articulated hands. Int. J. Rob. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  16. Cardou, P., Bouchard, S., Gosselin, C.: Kinematic-sensitivity indices for dimensionally nonhomogeneous jacobian matrices. IEEE Trans. Rob. 26(1), 166–173 (2010)

    Article  Google Scholar 

  17. Saadatzi, M., Masouleh, M., Taghirad, H., Gosselin, C., Cardou, P.: On the optimum design of 3-RPR parallel mechanisms. In: Proceedings of the 19th Iranian Conference on, Electrical Engineering (ICEE’11), pp. 1–6 (2011).

    Google Scholar 

  18. Saadatzi, M., Tale Masouleh, M., Taghirad, H., Gosselin, C., Cardou, P.: Geometric analysis of the kinematic sensitivity of planar parallel mechanisms. Trans. Can. Soc. Mech. Eng. 35(4), 477 (2011)

    Google Scholar 

  19. Moore, R.: Interval Analysis, vol. 60. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  20. Rump, S.: Intlab-interval laboratory. Citeseer (1998).

    Google Scholar 

  21. Hao, F., Merlet, J.: Multi-criteria optimal design of parallel manipulators based on interval analysis. Mech. Mach. Theory 40(2), 157–171 (2005)

    Article  MATH  Google Scholar 

  22. Merlet, J.: Interval analysis and robotics. Rob. Res. 147–156 (2011).

    Google Scholar 

  23. Merlet, J.: Solving the forward kinematics of a gough-type parallel manipulator with interval analysis. Int. J. Rob. Res. 23(3), 221–235 (2004)

    Article  Google Scholar 

  24. Oetomo, D., Daney, D., Shirinzadeh, B., Merlet, J.: Certified workspace analysis of 3RRR planar parallel flexure mechanism. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’08), pp. 3838–3843 (2008).

    Google Scholar 

  25. Moore, R., Kearfott, R., Cloud, M.: Introduction to interval analysis. Society for Industrial Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  26. Jaulin, L.: Applied Interval Analysis: with examples in parameter and state estimation, robust control and robotics, vol. 1. Springer Verlag, UK (2001)

    MATH  Google Scholar 

  27. Saadatzi, M., Tale Masouleh, M., Taghirad, H., Gosselin, C., Teshnehlab, M.: Multi-objective scale independent optimization of 3-rpr parallel mechanisms. In Proceedings of the IFToMM, In (2011)

    Google Scholar 

  28. Husty, M., Gosselin, C.: On the singularity surface of planar 3-rpr parallel mechanisms. Mech. Based Des. Struct. Mach. 36(4), 411–425 (2008)

    Article  Google Scholar 

  29. Loloei, A.Z., Taghirad, H.: Trans. Can. Soc. Mech, Eng (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Khalilpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khalilpour, S.A., Loloei, A.Z., Taghirad, H.D., Masouleh, M.T. (2013). Feasible Kinematic Sensitivity in Cable Robots Based on Interval Analysis. In: Bruckmann, T., Pott, A. (eds) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31988-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31988-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31987-7

  • Online ISBN: 978-3-642-31988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics