Skip to main content

Music Genre Classification Using an Auditory Memory Model

  • Conference paper
Speech, Sound and Music Processing: Embracing Research in India (CMMR 2011, FRSM 2011)

Abstract

Audio feature estimation is potentially improved by including the auditory short-term memory (STM) model. A new paradigm of audio feature estimation is obtained by adding the influence of notes in the STM. These notes are identified using the directional spectral flux, and the spectral content that is increased by the new note is added to the STM. The STM is exponentially fading with time span and number of elements, and each note only belongs to the STM for a limited time. Initial investigations regarding the behavior of the STM shows promising results, and an initial experiment with sensory dissonance has been undertaken with good results. The parameters obtained from the auditory memory model, along with the dissonance measure, are shown here to be of interest in music genre classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control processes. In: Spence, K.W., Spence, J.T. (eds.) The Psychology of Learning and Motivation, vol. 2, pp. 89–195. Academic Press, New York (1968)

    Google Scholar 

  2. Pashler, H., Carrier, M.: Structures, Processes, and the Flow of Information. In: Bjork, Bjork (eds.) Memory: Handbook of Perception and Cognition, pp. 3–29. Academic Press (1996)

    Google Scholar 

  3. Snyder, B.: Music and Memory. An Introduction. The MIT Press, Cambridge (2000)

    Google Scholar 

  4. Baddeley, A.D., Hitch, G.: Working memory. In: Bower, G.H. (ed.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 8, pp. 47–89. Academic Press, New York (1974)

    Google Scholar 

  5. Baddeley, A.D.: The episodic buffer: a new component of working memory? Trends in Cognitive Science 4, 417–423 (2000)

    Article  Google Scholar 

  6. Miller, G.A.: The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81–97 (1956)

    Article  Google Scholar 

  7. Gross, R.: Psychology: The Science of Mind and Behaviour. Hodder Arnold Publication (2005)

    Google Scholar 

  8. Massaro, D., Loftus, G.R.: Sensory and Perceptual Storage. In: Bjork, E.L., Bjork, R.A. (eds.) Memory, pp. 86–99. Academic Press, San Diego (1996)

    Google Scholar 

  9. Foote, J.: A similarity measure for automatic audio classification. In: Proceedings AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and Audio Corpora, Stanford, Palo Alto, California, USA (1997)

    Google Scholar 

  10. McNab, R.J., Smith, L.A., Witten, I.H., Henderson, C.L., Cunningham, S.J.: Towards the digital music library: Tune retrieval from acoustic input. In: Proceedings DL 1996, pp. 11–18 (1996)

    Google Scholar 

  11. Rolland, P.Y., Raskinis, G., Ganascia, J.G.: Musical content-based retrieval: an overview of the Melodiscov approach and system. ACM Multimedia 1, 81–84 (1999)

    Google Scholar 

  12. Ghias, A., Logan, J., Chamberlin, D., Smith, B.C.: Query by humming - musical information retrieval in an audio database. In: Proceedings Multimedia, pp. 231–236 (2001)

    Google Scholar 

  13. Pauws, S., Eggen, B.: PATS: Realization and user evaluation of an automatic playlist generator. In: Proceedings of the 3rd ISMIR, Ircam, France, pp. 222–230 (2002)

    Google Scholar 

  14. Anderson, J.R., Lebiere, C.: Atomic components of thought, Hillsdale, NJ (1998)

    Google Scholar 

  15. Moore, B.C.J.: Psychology of Hearing. Academy Press (1997)

    Google Scholar 

  16. Jensen, K.: Multiple scale music segmentation using rhythm, timbre and harmony. EURASIP Journal on Applied Signal Processing, Special issue on Music Information Retrieval Based on Signal Processing (2007)

    Google Scholar 

  17. Plomp, R., Levelt, W.J.M.: Tonal Consonance and Critical Bandwidth. J. Acoust. Soc. Am. 38(4), 548–560 (1965)

    Article  Google Scholar 

  18. Sethares, W.: Local consonance and the relationship between timbre and scale. J. Acoust. Soc. Am. 94(3), 1218–1228 (1993)

    Article  MathSciNet  Google Scholar 

  19. Meng, A.: Temporal feature integration for music organization. Ph.D. dissertation, IMM, Denmark Technical University (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jensen, K. (2012). Music Genre Classification Using an Auditory Memory Model. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K., Mohanty, S. (eds) Speech, Sound and Music Processing: Embracing Research in India. CMMR FRSM 2011 2011. Lecture Notes in Computer Science, vol 7172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31980-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31980-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31979-2

  • Online ISBN: 978-3-642-31980-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics