Skip to main content

Molecular Shape

  • Chapter
  • First Online:
Electronic Structure and Number Theory

Part of the book series: Structure and Bonding ((STRUCTURE,volume 148))

Abstract

Molecular shape is recognized as an emergent property that complements the projection from four-dimensional space–time to tangent Euclidean space. Projection from hypercomplex algebra to real algebra necessitates the three-dimensional definition of concepts such as chirality, quantum uncertainty and probability density to compensate for errors of abstraction. The emergent alternative description of extranuclear charge density as spherical standing waves, optimized by a golden spiral, reveals atomic structure in line with the periodic table of the elements and underpinning the concepts of bond order, interatomic distance and stretching force constant, related to chemical interaction. The principles giving rise to molecular structure are shown to depend, like bond order, on the constructive interference of atomic wave fields, optimized by minimal adjustment to bond orders. The procedure is shown to be equivalent to the philosophy of molecular mechanics. Arguments based on the traditional interpretation of electronegativity are presented to relate the parameters of strain-free bond lengths, dissociation energies and harmonic force constants, used in molecular mechanics, to quantum mechanically define ionization radii of atoms. Atomic electron densities and a bond-order function, both obtained by number-theory optimization, enable the direct calculation of interatomic distance, dissociation energy and stretching force constant for all pairwise interactions of any order. Torsional interaction determines the final shape of a molecule and presumably can only be understood as a four-dimensional effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \({c}^{2} = {a}^{2} + {b}^{2} - 2ab\cos C\).

References

  1. Boeyens JCA (2011) In: Putz MV (ed) Quantum frontiers of atoms and molecules. Nova, New York

    Google Scholar 

  2. Eddington AS (1948) The nature of the physical world. University Press, Cambridge

    Google Scholar 

  3. Batty-Pratt EB, Racey TJ (1980) Int J Theor Phys 19:437

    Article  Google Scholar 

  4. Boeyens JCA (2013) Struct Bond 148:71

    Google Scholar 

  5. Boeyens JCA, Comba P (2013) Struct Bond 148:12

    Google Scholar 

  6. Boeyens JCA (2010) Int J Mol Sci 11:4267

    Article  CAS  Google Scholar 

  7. Hückel E (1931) Z Phys 70:204. English translation in Hettema H (2000) Quantum chemistry. World Scientific, Singapore

    Google Scholar 

  8. Boeyens JCA (2008) Chemistry from first principles. Springer, Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  9. Comba P, Hambley TW, Martin B (2009) Molecular modeling of inorganic compounds, 3rd completely revised and enlarged edition. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Burkert U, Allinger NL (1982) Molecular mechanics. ACS Monograph 177

    Google Scholar 

  11. Comba P, Kerscher M (2009) Coord Chem Rev 253:564

    Article  CAS  Google Scholar 

  12. Comba P, Remenyi R (2003) Coord Chem Rev 238–239:9

    Article  Google Scholar 

  13. Leach AR (1996) Molecular modeling. Longman, Edinburgh

    Google Scholar 

  14. Allinger NL (1977) J Am Chem Soc 99:8127

    Article  CAS  Google Scholar 

  15. Snow MR, Buckingham DA, Marzilli DA, Sargeson AM (1969) J Chem Soc Chem Commun 891

    Google Scholar 

  16. Snow MR (1970) J Am Chem Soc 92:3610

    Article  CAS  Google Scholar 

  17. Buckingham DA, Maxwell IE, Sargeson AM, Snow MR (1970) J Am Chem Soc 92:3617

    Article  CAS  Google Scholar 

  18. Clark T (1985) A handbook of computational chemistry. Wiley, New York

    Google Scholar 

  19. Niketic SR, Rasmussen K (1977) The consistent force field. Springer, Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  20. Comba P, Zimmer M (1994) Inorg Chem 33:5368

    Article  CAS  Google Scholar 

  21. Comba P, Sickmüller AF (1997) Inorg. Chem. 36:4500

    Article  CAS  Google Scholar 

  22. Burton VJ, Deeth RJ (1995) J Chem Soc Chem Commun 573

    Google Scholar 

  23. Deeth RJ (2006) Eur J Inorg Chem 2551

    Google Scholar 

  24. Deeth RJ (2007) Inorg Chem 46:4492

    Article  CAS  Google Scholar 

  25. Deeth RJ, Paget VJ (1997) J Chem Soc Dalton Trans 537

    Google Scholar 

  26. Deeth RJ, Munslow IJ, Paget VJ (1997) In: Banci L, Comba P (eds) Molecular modeling and dynamics of bioinorganic systems. Kluwer, Dordrecht, p 77

    Chapter  Google Scholar 

  27. Jansen F, Norrby P-O (2003) Theor Chem Acta 109:1

    Article  Google Scholar 

  28. Norrby P-O (2001) In: Cundari TR (ed) Computational organometallic chemistry. Marcel Dekker, New York, p 7

    Google Scholar 

  29. Rappé AK, Casewit CJ, Calwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  Google Scholar 

  30. Root DM, Landis CR, Cleveland T (1993) J Am Chem Soc 115:4201

    Article  CAS  Google Scholar 

  31. Cleveland T, Landis CR (1996) J Am Chem Soc 118:6020

    Article  CAS  Google Scholar 

  32. Firman TK, Landis CR (2001) J Am Chem Soc 123:11728

    Article  CAS  Google Scholar 

  33. Landis CR, Firman TK, Cleveland T, Root DM (1997) In: Banci L, Comba P (eds) Molecular modeling and dynamics of bioinorganic systems. Kluwer, Dordrecht, p 49

    Chapter  Google Scholar 

  34. Deeth RJ (2011) In: Comba P (ed) Modeling of molecular properties. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  35. Meyer L (1870) Liebig’s Annalen Suppl. 7:354

    Google Scholar 

  36. Boeyens JCA (2008) Z Naturforsch 63b:199

    Google Scholar 

  37. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  38. Boeyens JCA (2013) Struct Bond 148:93

    Google Scholar 

  39. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013

    Article  CAS  Google Scholar 

  40. Shi S, Yan L, Yang J, Fischer-Shaulsky T, Tatcher J (2003) Comput Chem 24:1059

    Article  CAS  Google Scholar 

  41. Hambley TW, Hawkins CJ, Palmer JA, Snow MR (1981) Aust J Chem 34:45

    Article  CAS  Google Scholar 

  42. Bernhardt PV, Comba P (1992) Inorg Chem 31:2638

    Article  CAS  Google Scholar 

  43. Comba P, Hambley TW, Ströhle M (1995) Helv Chim Acta 78:2042

    Article  CAS  Google Scholar 

  44. Boeyens JCA (1986) S Afr J Chem 82:361

    Google Scholar 

  45. HyperChemTM, Hypercube Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA

    Google Scholar 

  46. Comba P, Hambley TW, Okon N (2001) In: MOMEClite, a molecular modeling package for inorganic compounds; Demo version. Lauer & Okon Chemische Verfahrens- & Softwareentwicklung

    Google Scholar 

  47. Stillwell J (1992) Geometry of surfaces. Springer, Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  48. Putz MV (ed) (2011) Quantum frontiers of atoms and molecules. Nova, New York

    Google Scholar 

  49. Hettema H (2000) Quantum chemistry. World Scientific, Singapore

    Google Scholar 

  50. Banci L, Comba P (eds) (2001) Molecular modeling and dynamics of bioinorganic systems. Kluwer, Dordrecht

    Google Scholar 

  51. Cundari TR (ed) (2001) Computational organometallic chemistry. Marcel Dekker, New York, p 7

    Google Scholar 

  52. Comba P (ed) (2011) Modeling of molecular properties. Wiley-VCH, Weinheim, Germany

    Google Scholar 

Download references

Acknowledgements

The ideas outlined in this chapter took shape during several visits of JCAB, sponsored by the Alexander von Humboldt Foundation, to the Institute of Inorganic Chemistry at the University of Heidelberg. Stimulating interaction with all members of the Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Comba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Comba, P., Boeyens, J.C.A. (2013). Molecular Shape. In: Boeyens, J., Comba, P. (eds) Electronic Structure and Number Theory. Structure and Bonding, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31977-8_6

Download citation

Publish with us

Policies and ethics