Skip to main content

Chemistry by Number Theory

  • Chapter
  • First Online:
Electronic Structure and Number Theory

Part of the book series: Structure and Bonding ((STRUCTURE,volume 148))

Abstract

Aspects of elementary number theory pertaining to the golden ratio and the golden spiral are shown to be related to and therefore of importance in the simulation of chemical phenomena. Readily derived concepts include atomic structure, electronegativity, bond order, the theory of covalent interaction and aspects of molecular chirality. The physical interpretation of the results implicates the 4D structure of space–time as a fundamental consideration. The implied classical nature of 3D molecular structure identifies molecular mechanics as an ideal method for structure optimization, based on parameters obtained by number theory. All results point at a 4D wave structure of electrostatic charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Three hundred isotopes of 100 elements with \(Z/N = 1\) are synthesized by α-particle addition in massive stellar objects. In interstellar space radioactive decay terminates at 264 stable isotopes of 81 elements.

  2. 2.

    On release into interstellar space, radioactive decay results in the survival of only 264 stable nuclides as two sets of 81 with A = 2n and two sets of 51 with odd A.

  3. 3.

    Bond order, assumed to stipulate the number of electron pairs in covalent interaction, although a poor measure of bond strength [1921], is a convenient general working model.

  4. 4.

    For the sake of simplicity, we do not consider degrees of chirality as distinguished e.g. by chirality functions [2628].

References

  1. Livio M (2002) The golden ratio. Review, London

    Google Scholar 

  2. Boeyens JCA (2003) J Radioanal Nucl Chem 259:33

    Article  Google Scholar 

  3. Li C, Zhang X, Cao Z (2005) Science 309:909

    Article  CAS  Google Scholar 

  4. Coxeter HSM (1989) Introduction to geometry, 2nd edn. Wiley, New York

    Google Scholar 

  5. de Chancourtois AEB (1889) Nature 41:186

    Article  Google Scholar 

  6. Plichta P (1998) God’s secret formula. Element Books, Boston

    Google Scholar 

  7. Boeyens JCA, Levendis DC (2008) Number theory and the periodicity of matter. Springer Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  8. Harkins WD (1931) Phys Rev 38:1270

    Article  CAS  Google Scholar 

  9. Goldman S, Joslin C (1992) J Phys Chem 96:6021

    Article  CAS  Google Scholar 

  10. Hardy GH, Wright EM (1979) An introduction to the theory of numbers, 5th edn. University Press, Oxford

    Google Scholar 

  11. Ford LR Sr (1938) Am Math Month 45:586

    Article  Google Scholar 

  12. Boltyanskii VG (1971) Mathematical methods of optical control. Translated from the Russian by Trirogoff KN and Tarnove I. Holt, Reinhart and Winston, New York

    Google Scholar 

  13. Boeyens JCA (2009) Phys Essays 22:493

    Article  Google Scholar 

  14. Boeyens JCA (1994) J Chem Soc Faraday Trans 90:3377

    Article  CAS  Google Scholar 

  15. Boeyens JCA (2008) Chemistry from first principles. Springer.com

    Google Scholar 

  16. Bohm D (1952) Phys Rev 85:166

    Article  CAS  Google Scholar 

  17. Boeyens JCA (2008) Z Naturforsch 63b:199

    Google Scholar 

  18. Herman F, Skillman S (1963) Atomic structure calculations. Prentice-Hall, Upper Saddle River

    Google Scholar 

  19. Boeyens JCA (1982) J Crystallogr Spectr Res 12:245

    Article  CAS  Google Scholar 

  20. Kutzelnigg W (1973) Angew Chem 85:551

    Google Scholar 

  21. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  22. Comba P, Boeyens JCA (2013) Struct Bond 148:137

    Google Scholar 

  23. Boeyens JCA (2010) Chemical cosmology. Springer, Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  24. Schutte CJH (2013) Struct Bond 148:49

    Google Scholar 

  25. Boeyens JCA (2003) New theories for chemistry. Elsevier, Amsterdam

    Google Scholar 

  26. Derflinger G (1991) In: Janoschek R (ed) Chirality—from weak bosons to the α-helix. Springer, Dordrecht, Heidelberg, London, New York

    Google Scholar 

  27. Janoschek R (ed) (1991) Chirality—from weak bosons to the α-helix. Springer, Heidelberg

    Google Scholar 

  28. Ruch E (1972) Acc Chem Res 5:49

    Article  CAS  Google Scholar 

  29. Stillwell J (1992) Geometry of surfaces. Springer, Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  30. Veblen O (1933) Projektive Relativitätstheorie. Springer, Berlin. English translation in Boeyens JCA (2010) Chemical cosmology. Springer, Dordrecht, Heidelberg, London, New York

    Google Scholar 

  31. Veblen O, Hoffman B (1930) Phys Rev 36:810

    Article  Google Scholar 

  32. Boeyens JCA (2010) Int J Mol Sci 11:4267

    Article  CAS  Google Scholar 

  33. Comba P, Hambley TW, Martin B (2009) Molecular modeling of inorganic compounds, 3rd completely revised and enlarged edition. Wiley-VCH, Weinheim

    Book  Google Scholar 

  34. Saunders M, Jarret RM (1986) J Comp Chem 7:578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Alexander von Humboldt Foundation is gratefully acknowledged. We acknowledge the input of Casper Schutte during many informative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. A. Boeyens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boeyens, J.C.A., Comba, P. (2013). Chemistry by Number Theory. In: Boeyens, J., Comba, P. (eds) Electronic Structure and Number Theory. Structure and Bonding, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31977-8_1

Download citation

Publish with us

Policies and ethics