Advertisement

The Biology and Genomic Localization of Cytosine Modifications

  • Gordon R. McInroy
  • Neil M. Bell
  • Gabriella Ficz
  • Shankar Balasubramanian
  • Wolf Reik
  • Eun-Ang Raiber
Chapter
Part of the Epigenetics and Human Health book series (EHH)

Abstract

Epigenetic mechanisms describe gene expression states that are somatically heritable but do not involve changes in the underlying DNA sequence of the organism. Epigenetic changes are mediated by dynamic chemical modifications of DNA and histone proteins within chromatin. These modifications play a central role in the regulation of processes such as transcription, replication, and DNA repair and represent a unique profile for each cell type. In this chapter we will focus on DNA modifications, particularly on the 5′ position of cytosine, their potential implications in epigenetically controlled mechanisms, and furthermore discuss the technical challenges that are associated with the methods used to study these modifications.

Keywords

Bisulfite Sequencing Reduce Representation Bisulfite Sequencing 5hmC Level Primordial Germ Cell SMRT Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ball MP, Li JB et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368PubMedCentralPubMedGoogle Scholar
  2. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedGoogle Scholar
  3. Booth MJ, Branco MR et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937PubMedGoogle Scholar
  4. Booth MJ, Ost TW et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8(10):1841–1851PubMedCentralPubMedGoogle Scholar
  5. Borst P, Sabatini R (2008) Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol 62:235–251PubMedGoogle Scholar
  6. Bostick M, Kim JK et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764PubMedGoogle Scholar
  7. Branco MR, Ficz G et al (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13Google Scholar
  8. Brinkman AB, Simmer F et al (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52(3):232–236PubMedGoogle Scholar
  9. Brodzik AK (2007) Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem. Bioinformatics 23(6):694–700PubMedGoogle Scholar
  10. Brooks SC, Adhikary S et al (2013) Recent advances in the structural mechanisms of DNA glycosylases. Biochim Biophys Acta 1834(1):247–271PubMedCentralPubMedGoogle Scholar
  11. Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59(36):7075–7101Google Scholar
  12. Chen CC, Wang KY et al (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287(40):33116–33121PubMedCentralPubMedGoogle Scholar
  13. Chen Q, Chen Y et al (2013) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493(7433):561–564PubMedCentralPubMedGoogle Scholar
  14. Chodavarapu RK, Feng S et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392PubMedCentralPubMedGoogle Scholar
  15. Choy JS, Wei S et al (2010) DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc 132(6):1782–1783PubMedCentralPubMedGoogle Scholar
  16. Chuang LS, Ian HI et al (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277(5334):1996–2000PubMedGoogle Scholar
  17. Clarke J, Wu H-C et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270PubMedGoogle Scholar
  18. Cortellino S, Xu J et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146(1):67–79PubMedCentralPubMedGoogle Scholar
  19. Costas M, Mehn MP et al (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104(2):939–986PubMedGoogle Scholar
  20. Coupland P, Chandra T et al (2012) Direct sequencing of small genomes on the Pacific Biosciences RS without library preparation. Biotechniques 53(6):365–372PubMedGoogle Scholar
  21. Dawlaty MM, Breiling A et al (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24(3):310–323PubMedCentralPubMedGoogle Scholar
  22. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022PubMedCentralPubMedGoogle Scholar
  23. Doege CA, Inoue K et al (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488(7413):652–655PubMedGoogle Scholar
  24. Down TA, Rakyan VK et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26(7):779–785PubMedCentralPubMedGoogle Scholar
  25. Easwaran HP, Schermelleh L et al (2004) Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep 5(12):1181–1186PubMedCentralPubMedGoogle Scholar
  26. Ehrich M, Zoll S et al (2007) A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Res 35(5):e29PubMedCentralPubMedGoogle Scholar
  27. Fathi AT, Abdel-Wahab O (2012) Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol 2012:469592PubMedCentralPubMedGoogle Scholar
  28. Ficz G, Branco MR et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402PubMedGoogle Scholar
  29. Flusberg BA, Webster DR et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465PubMedCentralPubMedGoogle Scholar
  30. Fouse SD, Shen Y et al (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2(2):160–169PubMedCentralPubMedGoogle Scholar
  31. Frommer M, McDonald LE et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831PubMedCentralPubMedGoogle Scholar
  32. Globisch D, Munzel M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5(12):e15367PubMedCentralPubMedGoogle Scholar
  33. Gu H, Smith ZD et al (2011a) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6(4):468–481PubMedGoogle Scholar
  34. Gu TP, Guo F et al (2011b) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477(7366):606–610PubMedGoogle Scholar
  35. Guibert S, Forne T et al (2012) Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 22(4):633–641PubMedCentralPubMedGoogle Scholar
  36. Hackett JA, Sengupta R et al (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448–452PubMedGoogle Scholar
  37. Hajkova P, Jeffries SJ et al (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329(5987):78–82PubMedGoogle Scholar
  38. Hashimoto H, Hong S et al (2012) Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res 40(20):10203–10214PubMedCentralPubMedGoogle Scholar
  39. He YF, Li BZ et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307PubMedCentralPubMedGoogle Scholar
  40. Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science 315(5815):1141–1143PubMedGoogle Scholar
  41. Huang Y, Pastor WA et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5(1):e8888PubMedCentralPubMedGoogle Scholar
  42. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334(6053):194PubMedCentralPubMedGoogle Scholar
  43. Inoue A, Shen L et al (2011) Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res 21(12):1670–1676PubMedCentralPubMedGoogle Scholar
  44. Ito S, D’Alessio AC et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133PubMedCentralPubMedGoogle Scholar
  45. Ito S, Shen L et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303PubMedCentralPubMedGoogle Scholar
  46. Jacobs AL, Schar P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121(1):1–20PubMedCentralPubMedGoogle Scholar
  47. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492PubMedGoogle Scholar
  48. Kagiwada S, Kurimoto K et al (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32(3):340–353PubMedCentralPubMedGoogle Scholar
  49. Kamiya H, Tsuchiya H et al (2002) Mutagenicity of 5-formylcytosine, an oxidation product of 5-methylcytosine, in DNA in mammalian cells. J Biochem 132(4):551–555PubMedGoogle Scholar
  50. Kellinger MW, Song CX et al (2012) 5-Formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19(8):831–833PubMedCentralPubMedGoogle Scholar
  51. Keshet I, Schlesinger Y et al (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38(2):149–153PubMedGoogle Scholar
  52. Kinney SM, Chin HG et al (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286(28):24685–24693PubMedCentralPubMedGoogle Scholar
  53. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97PubMedGoogle Scholar
  54. Ko M, Huang Y et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843PubMedCentralPubMedGoogle Scholar
  55. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930PubMedCentralPubMedGoogle Scholar
  56. Kristine Williams JC, Helin K (2012) DNA methylation: TET proteins—guardians of CpG islands? EMBO Rep 13(1):28–35PubMedCentralGoogle Scholar
  57. Ku M, Koche RP et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4(10):e1000242PubMedCentralPubMedGoogle Scholar
  58. Laurent L, Wong E et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20(3):320–331PubMedCentralPubMedGoogle Scholar
  59. Levene MJ, Korlach J et al (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686PubMedGoogle Scholar
  60. Lian CG, Xu Y et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150(6):1135–1146PubMedCentralPubMedGoogle Scholar
  61. Liutkeviciute Z, Lukinavicius G et al (2009) Cytosine-5-methyltransferases add aldehydes to DNA. Nat Chem Biol 5(6):400–402PubMedGoogle Scholar
  62. Lucifero D, Mertineit C et al (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79(4):530–538PubMedGoogle Scholar
  63. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286(41):35334–35338PubMedCentralPubMedGoogle Scholar
  64. Maunakea AK, Nagarajan RP et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257PubMedCentralPubMedGoogle Scholar
  65. Mayer W, Niveleau A et al (2000) Demethylation of the zygotic paternal genome. Nature 403(6769):501–502PubMedGoogle Scholar
  66. Meilinger D, Fellinger K et al (2009) Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep 10(11):1259–1264PubMedCentralPubMedGoogle Scholar
  67. Meissner A, Gnirke A et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877PubMedCentralPubMedGoogle Scholar
  68. Meissner A, Mikkelsen TS et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770PubMedCentralPubMedGoogle Scholar
  69. Mellen M, Ayata P et al (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151(7):1417–1430PubMedCentralPubMedGoogle Scholar
  70. Mirsaidov U, Timp W et al (2009) Nanoelectromechanics of methylated DNA in a synthetic nanopore. Biophys J 96(4):L32–L34PubMedCentralPubMedGoogle Scholar
  71. Morgan HD, Dean W et al (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279(50):52353–52360PubMedGoogle Scholar
  72. Nabel CS, Jia H et al (2012) AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol 8(9):751–758PubMedCentralPubMedGoogle Scholar
  73. Okada Y, Yamagata K et al (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463(7280):554–558PubMedCentralPubMedGoogle Scholar
  74. Okano M, Xie S et al (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220PubMedGoogle Scholar
  75. Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133(7):1145–1148PubMedGoogle Scholar
  76. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum, New York, NYGoogle Scholar
  77. Oswald J, Engemann S et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478PubMedGoogle Scholar
  78. Pastor WA, Pape UJ et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397PubMedCentralPubMedGoogle Scholar
  79. Pastor WA, Huang Y et al (2012) The GLIB technique for genome-wide mapping of 5-hydroxymethylcytosine. Nat Protoc 7(10):1909–1917PubMedCentralPubMedGoogle Scholar
  80. Patiki G (1967) Thin layer chromatography of nucleic acid bases, nucleosides and related compounds. J Chromatogr 29:133–141Google Scholar
  81. Penn NW, Suwalski R et al (1972) The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126(4):781–790PubMedCentralPubMedGoogle Scholar
  82. Pfaffeneder T, Hackner B et al (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl 50(31):7008–7012PubMedGoogle Scholar
  83. Popp C, Dean W et al (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463(7284):1101–1105PubMedCentralPubMedGoogle Scholar
  84. Raiber EA, Beraldi D et al (2012) Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol 13(8):R69PubMedCentralPubMedGoogle Scholar
  85. Raizis AM, Schmitt F et al (1995) A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal Biochem 226(1):161–166PubMedGoogle Scholar
  86. Randerath K, Reddy MV et al (1981) 32P-labeling test for DNA damage. Proc Natl Acad Sci U S A 78(10):6126–6129PubMedCentralPubMedGoogle Scholar
  87. Rangam G, Schmitz KM et al (2012) AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS One 7(8):e43279PubMedCentralPubMedGoogle Scholar
  88. Robertson AB, Dahl JA et al (2011) A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 39(8):e55PubMedCentralPubMedGoogle Scholar
  89. Robertson AB, Dahl JA et al (2012) Pull-down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads. Nat Protoc 7(2):340–350PubMedGoogle Scholar
  90. Schadt EE, Banerjee O et al (2013) Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res 23(1):129–141PubMedCentralPubMedGoogle Scholar
  91. Seisenberger S, Andrews S et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48(6):849–862PubMedCentralPubMedGoogle Scholar
  92. Seisenberger S, Peat JR et al (2013) Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr Opin Cell Biol 25(3):281–288PubMedGoogle Scholar
  93. Seki Y, Hayashi K et al (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278(2):440–458PubMedGoogle Scholar
  94. Serre D, Lee BH et al (2010) MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2):391–399PubMedCentralPubMedGoogle Scholar
  95. Sharif J, Muto M et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912PubMedGoogle Scholar
  96. Sharp AJ, Stathaki E et al (2011) DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21(10):1592–1600PubMedCentralPubMedGoogle Scholar
  97. Shen L, Wu H et al (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692–706PubMedCentralPubMedGoogle Scholar
  98. Shi FT, Kim H et al (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288(29):20776–20784PubMedCentralPubMedGoogle Scholar
  99. Shibuya K, Fukushima S et al (2009) RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci U S A 106(5):1660–1665PubMedCentralPubMedGoogle Scholar
  100. Sjolund AB, Senejani AG et al (2013) MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles. Mutat Res 743–744:12–25PubMedGoogle Scholar
  101. Song CX, Szulwach KE et al (2011a) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29(1):68–72PubMedCentralPubMedGoogle Scholar
  102. Song CX, Yu M et al (2011b) Detection of 5-hydroxymethylcytosine in a combined glycosylation restriction analysis (CGRA) using restriction enzyme Taq(alpha)I. Bioorg Med Chem Lett 21(17):5075–5077PubMedCentralPubMedGoogle Scholar
  103. Song CX, Clark TA et al (2012) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9(1):75–77Google Scholar
  104. Song CX, Szulwach KE et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153(3):678–691PubMedCentralPubMedGoogle Scholar
  105. Sowers LC, Shaw BR et al (1987) Base stacking and molecular polarizability: effect of a methyl group in the 5-position of pyrimidines. Biochem Biophys Res Commun 148(2):790–794PubMedGoogle Scholar
  106. Spruijt CG, Gnerlich F et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152(5):1146–1159PubMedGoogle Scholar
  107. Stroud H, Feng S et al (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12(6):R54PubMedCentralPubMedGoogle Scholar
  108. Suetake I, Shinozaki F et al (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279(26):27816–27823PubMedGoogle Scholar
  109. Sun Z, Terragni J et al (2013) High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 3(2):567–576PubMedCentralPubMedGoogle Scholar
  110. Suzuki M, Jing Q et al (2010) Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol 11(4):R36PubMedCentralPubMedGoogle Scholar
  111. Szulwach KE, Li X et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14(12):1607–1616PubMedCentralPubMedGoogle Scholar
  112. Tahiliani M, Koh KP et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935PubMedCentralPubMedGoogle Scholar
  113. Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139(11):1895–1902PubMedCentralPubMedGoogle Scholar
  114. Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17(7):1912–1915PubMedGoogle Scholar
  115. Thalhammer A, Hansen AS et al (2011) Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation. Chem Commun (Camb) 47(18):5325–5327Google Scholar
  116. Wallace EV, Stoddart D et al (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun (Camb) 46(43):8195–8197Google Scholar
  117. Wang RY, Gehrke CW et al (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8(20):4777–4790PubMedCentralPubMedGoogle Scholar
  118. Wang H, Guan S et al (2011) Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine. Nucleic Acids Res 39(21):9294–9305PubMedCentralPubMedGoogle Scholar
  119. Wanunu M, Cohen-Karni D et al (2011) Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J Am Chem Soc 133(3):486–492PubMedCentralPubMedGoogle Scholar
  120. Weaver IC, Cervoni N et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854PubMedGoogle Scholar
  121. Weaver IC, D’Alessio AC et al (2007) The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci 27(7):1756–1768PubMedCentralPubMedGoogle Scholar
  122. Weber M, Davies JJ et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862PubMedGoogle Scholar
  123. Williams K, Christensen J et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473(7347):343–348PubMedCentralPubMedGoogle Scholar
  124. Wossidlo M, Nakamura T et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241PubMedGoogle Scholar
  125. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620PubMedCentralPubMedGoogle Scholar
  126. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452PubMedCentralPubMedGoogle Scholar
  127. Wu H, D’Alessio AC et al (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473(7347):389–393PubMedCentralPubMedGoogle Scholar
  128. Wyatt GR (1950) Occurrence of 5-methyl-cytosine in nucleic acids. Nature 166:237–238PubMedGoogle Scholar
  129. Xu Y, Wu F et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42(4):451–464PubMedCentralPubMedGoogle Scholar
  130. Yamaguchi S, Hong K et al (2013) Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res 23(3):329–339PubMedCentralPubMedGoogle Scholar
  131. Yu M, Hon GC et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149(6):1368–1380PubMedCentralPubMedGoogle Scholar
  132. Zeschnigk M, Schmitz B et al (1997) Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet 6(3):387–395PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gordon R. McInroy
    • 1
  • Neil M. Bell
    • 1
  • Gabriella Ficz
    • 2
  • Shankar Balasubramanian
    • 1
    • 3
    • 4
  • Wolf Reik
    • 5
    • 6
  • Eun-Ang Raiber
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Centre for Haemato-OncologyBarts Cancer InstituteLondonUK
  3. 3.Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
  4. 4.School of Clinical MedicineThe University of CambridgeCambridgeUK
  5. 5.Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
  6. 6.Epigenetics ProgrammeThe Babraham InstituteCambridgeUK

Personalised recommendations