Thermoset Three-Component Composite Systems Using Carbon Nanotubes

  • L. V. da SilvaEmail author
  • S. C. Amico
  • S. H. Pezzin
  • L. A. F. Coelho
  • C. M. Becker
Part of the Carbon Nanostructures book series (CARBON, volume 3)


In this chapter, a brief review on three-component composites comprised of a (micro) fibrous reinforcement and a thermoset polymer resin filled with nanoparticles is presented. For this type of composite, carbon nanotubes (CNT) and carbon nanofibers are more commonly used and the focus usually lies on resin-dominated properties, such as interlaminar shear strength, and interlaminar fracture toughness. Many three-component systems comprised of fiber/epoxy/CNT have been produced using resin transfer molding (RTM) or VARTM. However, there are major difficulties associated with the impregnation of a dry fibrous reinforcement using a highly viscous suspension of resin/nanofiller, especially for high content of nanofillers or highly packed fibrous systems. In such harsh circumstances, an alternative and recent approach to enable processing comprises the production/use of three-component prepregs containing nanofillers, although they are usually associated with high cost. The presented case study focused on an alternative route to produce glass-fiber composites with high content of CNT via RTM. A practical, low-cost and effective methodology for the direct deposition of an acetone/CNT/epoxy suspension on glass-fiber cloths was developed, achieving up to 4.15 % wt. in overall CNT content in the composite. The mechanical properties of the composites produced with non-functionalized CNT increased, in general, up to 10 % compared to the reference epoxy/glass-fiber composite. However, the high CNT content obtained was of uttermost importance for the development of electromagnetic characteristics on the material, absorbing much of the radiation in the microwave frequency range. The reflectivity properties reached a maximum of approximately - 14 dB (c.a. 95 % of electromagnetic absorption) and this excellent performance was obtained using a comparatively low cost (glass fiber) and thin (»2.2 mm) polymer composite material. Thus, the developed composites showed great potential to be used as microwave-absorption materials, replacing conventional ones employed for this aim. With further improvement in the manufacturing process, these materials could become of interest as high performance composites in a wide range of engineering applications, from telecommunications to aerospace.


Final Composite Fumed Silica Carbon Nanofibers Resin Transfer Molding Interlaminar Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Dr. Mirabel Rezende (IAE/CTA) for the reflectivity measurements, Dr. Ademir Zattera (UCS) for the short-beam testing and Giulio Toso for help with the moldings. The authors would also like to thank CNPq, CAPES and FAPERGS for the financial support.


  1. 1.
    Boeger, L., Wichmann, M.H.G., Meyer, L.O., Schulte, K.: Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos. Sci. Technol. 68, 1886–1894 (2008). doi: 10.1016/j.compscitech.2008.01.001 CrossRefGoogle Scholar
  2. 2.
    Chang, M.S.: An investigation on the dynamic behavior and thermal properties of MWCNTs/FRP laminate composites. J. Reinf. Plast. Comp. 29, 3593–3599 (2010). doi: 10.1177/0731684410379510 CrossRefGoogle Scholar
  3. 3.
    Chen, W.J., Li, Y.L., Chiang, C.L., Kuan, C.F., Kuan, H.C., Lin, T.T., Yip, M.C.: Preparation and characterization of carbon nanotubes/epoxy resin nano-prepreg for nanocomposites. J. Phys. Chem. Solids 71, 431–435 (2010). doi: 10.1016/j.jpcs.2009.12.006 CrossRefGoogle Scholar
  4. 4.
    De Marco, A.M., De Villoria, R.G.: Manufacturing nanoreinforcement prepreg used for e.g. monitoring damage in structures, electrostatic shielding, anti-lightning systems in wind generators, and surface finishing, involves mixing nanoreinforcement with resin. Patent EP2000494-A1 (2009)Google Scholar
  5. 5.
    Fan, Z.H., Hsiao, K.T., Advani, S.G.: Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media. Carbon 42, 871–876 (2004). doi: 10.1016/j.carbon.2004.01.067 CrossRefGoogle Scholar
  6. 6.
    Fan, Z.H., Santare, M.H., Advani, S.G.: Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. Part A-Appl. S. 39, 540–554 (2008). doi: 10.1016/j.compositesa.2007.11.013 CrossRefGoogle Scholar
  7. 7.
    Folgueras, L.C., Alves, M.A., Rezende, M.C.: Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J. Aerosp. Technol. Manag. 2, 63–70 (2010). doi: 10.5028/jatm.2010.02016370 CrossRefGoogle Scholar
  8. 8.
    Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A.W., Lomov, S.V., Verpoest, I.: Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70, 1346–1352 (2010). doi: 10.1016/j.compscitech.2010.04.010 CrossRefGoogle Scholar
  9. 9.
    Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., van Vuure, A.W., Gorbatikh, L., Moldenaers, P., Verpoest, I.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47, 2914–2923 (2009). doi: 10.1016/j.carbon.2009.06.039 CrossRefGoogle Scholar
  10. 10.
    Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A-Appl. S. 36, 1525–1535 (2005). doi: 10.1016/j.compositesa.2005.02.007 CrossRefGoogle Scholar
  11. 11.
    Kim, H.S., Hahn, H.T.: Graphite fiber composites interlayered with single-walled carbon nanotubes. J. Compos. Mater. 45, 1109–1120 (2011). doi: 10.1177/0021998311402726 CrossRefGoogle Scholar
  12. 12.
    Kim, M., Park, Y.-B., Okoli, O.I., Zhang, C.: Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos. Sci. Technol. 69, 335–342 (2009). doi: 10.1016/j.compscitech.2008.10.019 CrossRefGoogle Scholar
  13. 13.
    Lee, O.K.H., Kim, S.S., Lima, Y.S.: Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes. J. Magn. Magn. Mater. 323, 587–591 (2011). doi: 10.1016/j.jmmm.2010.10.018 CrossRefGoogle Scholar
  14. 14.
    Loos, M.R., Coelho, L.A.F., Pezzin, S.H., Amico, S.C.: The effect of acetone addition on the properties of epoxy. Polimeros 18, 76–80 (2008). doi: 10.1590/S0104-14282008000100015 CrossRefGoogle Scholar
  15. 15.
    Lui, S.D., Stevenson, J.F., Vacanti, D.C., Vicanti, D.C., Lui, S.C.D.: Multimaterial prepreg sheet for forming electronic chassis and for athletic equipment such as vaulting poles or golf clubs, comprises braid or woven fabric sheet of predetermined length and width. Patent US2009/0095523A1 (2009)Google Scholar
  16. 16.
    Sadeghian, R., Gangireddy, S., Minaie, B., Hsiao, K.T.: Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos. Part A-Appl. S. 37, 1787–1795 (2006). doi: 10.1016/j.compositesa.2005.09.010 CrossRefGoogle Scholar
  17. 17.
    Seyhan, A.T., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75, 5151–5162 (2008). doi: 10.1016/j.engfracmech.2008.08.003 CrossRefGoogle Scholar
  18. 18.
    Suave, J., Coelho, L.A.F., Amico, S.C., Pezzin, S.H.: Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT. Mat. Sci. Eng. A-Struct. 509, 57–62 (2009). doi: 10.1016/j.msea.2009.01.036 CrossRefGoogle Scholar
  19. 19.
    Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B., Schulte, K.: Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73, 2346–2359 (2006). doi: 10.1016/j.engfracmech.2006.05.015 CrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Experimental study on the thermal and mechanical properties of Multi-walled carbon nanotube-reinforced epoxy. Mat. Sci. Eng. A-Struct. 452, 657–664 (2007). doi: 10.1016/j.msea.2006.11.066 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. V. da Silva
    • 1
    Email author
  • S. C. Amico
    • 1
  • S. H. Pezzin
    • 2
  • L. A. F. Coelho
    • 2
  • C. M. Becker
    • 1
  1. 1.Department of Materials EngineeringUniversidade Federal do Rio Grande do SulPorto Alegre/RSBrazil
  2. 2.Centro de Ciências TecnológicasUniversidade do Estado de Santa CatarinaJoinville/SCBrazil

Personalised recommendations