Advertisement

Synthesis of Vertically Aligned Carbon Nanotubes by CVD Technique: A Review

  • A. G. OsorioEmail author
  • A. S. Takimi
  • C. P. Bergmann
Chapter
Part of the Carbon Nanostructures book series (CARBON, volume 3)

Abstract

Vertically aligned carbon nanotubes are bundles of carbon nanotubes that grow perpendicular to a substrate, assembling a bamboo forest. They are dense and orderly arranged, and can be very long. The unique properties of carbon nanotubes along with the ability to produce yarns from these nanotubes forests enable vertically aligned nanotubes to be used in various fields. The most used method to synthesize these nanotubes is the CVD technique. According to the parameters used, carbon nanotubes forests will grow longer or shorter, more or less aligned. This review explores the CVD method used to obtain vertically aligned nanotubes as well as the process parameters that determine the morphology, orientation and growth size of nanotubes and the applications of these materials.

Keywords

Vertically aligned carbon nanotubes CVD method Synthesis parameters and applications 

References

  1. 1.
    Meyyappan, M.: Carbon nanotubes: science and applications, pp 2–21. NASA AR Center. Moffett Field, CA. CRC Press LLC (2005)Google Scholar
  2. 2.
    Gogotsi, Y.: Carbon Nanomaterials, pp 41–70. Drexel University, Philadelphia, Pennsylvania, USA. Taylor and Francis Group, LLC (2006)Google Scholar
  3. 3.
    Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Comp. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  4. 4.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  5. 5.
    Pinault, M., Mayne-L'Hermite, M., Reynaud, C., Beyssac, O., Rouzaud, J.N., Clinard, C.: Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects. Diam. Relat. Mater. 13, 1266–1269 (2004)CrossRefGoogle Scholar
  6. 6.
    Huang, W., Wang, Y., Luo, G., Wei, F.: 9 9.9 % purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41, 2585–2590 (2003)CrossRefGoogle Scholar
  7. 7.
    Marulanda, J.M.: Carbon nanotubes. In-Tech, India (2010)Google Scholar
  8. 8.
    Hart, A.J., Slocum, A.H.: Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B 110, 8250–8257 (2006)CrossRefGoogle Scholar
  9. 9.
    Choi, S.I., Nam, J.S., Lee, C.M., Choi, S.S., Kim, J.I., Park, J.M., Hong, S.H.: High purity synthesis of carbon nanotubes by methane decomposition using an arc-jet plasma. Curr. Appl. Phys. 6, 224–229 (2006)CrossRefGoogle Scholar
  10. 10.
    Jayatissa, A.H., Guo, K.: Synthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics. Vacuum 83, 853–856 (2009)CrossRefGoogle Scholar
  11. 11.
    Chen, K.-C.: Low-temperature CVD growth of carbon nanotubes for field emission application. Diam. Relat. Mater. 16, 566–569 (2007)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H.: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005)CrossRefGoogle Scholar
  13. 13.
    Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 48, 1105–1115 (2010)CrossRefGoogle Scholar
  14. 14.
    Li, Q., Zhang, Z., DePaula, R.F., Zheng, L., Zhao, Y., Stan, L., Holesinger, T.G., Arendt, P.N., Peterson, D.E., Zhu, T.E.: Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18, 3160–3163 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Li, R., Liu, H., Sun, X., Merel, P., Desilets, S.: Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water. Appl. Surf. Sci. 255, 5003–5008 (2009)CrossRefGoogle Scholar
  16. 16.
    Hu, J.L., Yang, C.C., Huang, J.H.: Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition. Diam. Relat. Mater. 17, 2084–2088 (2008)CrossRefGoogle Scholar
  17. 17.
    Liu, H., Zhang, Y., Li, R., Suna, X., Wang, F., Ding, Z., Mérel, P., Desilets, S.: Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: effect of water vapor. Appl. Surf. Sci. 256, 4692–4696 (2010)CrossRefGoogle Scholar
  18. 18.
    Hart, A.J., Van Laake, L., Slocum, A.H.: Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3(5), 772–777 (2007). doi: 10.1002/smll.200600716 CrossRefGoogle Scholar
  19. 19.
    Zhang, Q., Wang, D.-G., Huang, J.-Q., Zhou, W.-P., Luo, G.-H., Qian, W.-Z., Wei, F.: Dry spinning yarns from vertically aligned carbon nanotubes arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon 48, 2855–2861 (2010)CrossRefGoogle Scholar
  20. 20.
    Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 30, 1362–1364 (2004)CrossRefGoogle Scholar
  21. 21.
    Suzuki, S., Hibino, H.: Characterization of doped single-wall carbon nanotubes by Raman spectroscopy. Carbon 49, 2264–2272 (2011)CrossRefGoogle Scholar
  22. 22.
    Lee, Y.-J., Kim, H.-H., Hatori, H.: Effects of substitutional B on oxidation of carbon nanotubes in air and oxygen plasma. Carbon 42, 1053–1056 (2004)CrossRefGoogle Scholar
  23. 23.
    Cruz-Silva, E., Cullen, D.A., Gu, L., Romo-Herrera, J.M., Muñoz-Sandoval, E., López-Urías, F., Sumpter, B.G., Meunier, V., Charlier, J.C., Smith, D.J., Terrones, H., Terrones, M.: Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. ASC Nano 2, 441–448 (2008)CrossRefGoogle Scholar
  24. 24.
    Lee, Y.-J., Radovic, L.R.: Oxidation inhibition effects of phosphorus and boron in different carbon fabrics. Carbon 41, 1987–1997 (2003)CrossRefGoogle Scholar
  25. 25.
    Maciel, I.O., Campos-Delgado, J., Cruz-Silva, E., Pimenta, M.A., Sumpter, B.G., Meunier, V., Lopez-Urıas, F., Munoz-Sandoval, E., Terrones, H., Terrones, M., Jorio, A.: Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes. Nano Lett. 9(6), 2267–2292 (2009)CrossRefGoogle Scholar
  26. 26.
    Zhang, M., Atkinson, K.R., Baughman, R.H.: Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004)CrossRefGoogle Scholar
  27. 27.
    Tran, C.D., Humphries, W., Smith, S.M., Huynh, C., Lucas, S.: Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47, 2662–2670 (2009)CrossRefGoogle Scholar
  28. 28.
    Kim, J.-H., Jang, H.-S., Lee, K.H., Overzet, L.J., Lee, G.S.: Tuning of Fe catalysts for growth of spin-capable carbon nanotubes. Carbon 48, 538–547 (2010)CrossRefGoogle Scholar
  29. 29.
    De los Arcos, T., Garnier, M.G., Oelhafen, P., Mathys, D., Seo, J.W., Domingo, C., Garcıa-Ramos, J.V., Sanchez-Cortes, S.: Strong influence of buffer layer type on carbon nanotube characteristics. Carbon 42, 187–190 (2004)Google Scholar
  30. 30.
    Choi, B.H., Yoo, H., Kim, Y.B., Lee, J.H.: Effects of Al buffer layer on growth of highly vertically aligned carbon nanotube forests for in situ yarning. Microelectron. Eng. 87, 1500–1505 (2010)CrossRefGoogle Scholar
  31. 31.
    Moodley, P., Loosc, J., Niemantsverdriet, J.W., Thüne, P.C.: Is there a correlation between catalyst particle size and CNT diameter? Carbon 47, 2002–2013 (2009)CrossRefGoogle Scholar
  32. 32.
    Liu, K., Sun, Y., Chen, L., Feng, C., Feng, X., Jiang, K., Zhao, Y., Fan, S.: Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 8(2), 700–705 (2008)CrossRefGoogle Scholar
  33. 33.
    Bonnet, F., Ropital, F., Berthier, Y., Marcus, P.: Filamentous carbon formation caused by catalytic metal particles from iron oxide. Mater. Corros. 54(11), 870–880 (2003)CrossRefGoogle Scholar
  34. 34.
    Esconjauregui, S., Whelan, C.M., Maex, K.: The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon morphologies. Carbon 47, 659–669 (2009)CrossRefGoogle Scholar
  35. 35.
    Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D., Dai, H.: Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424–11431 (2001)CrossRefGoogle Scholar
  36. 36.
    Nessim, G.D., Hart, J.A., Kim, J.S., Acquaviva, D., Oh, J., Morgan, C.D., Seita, M., Leib, J.S., Thompson, C.V.: Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett. 8(11), 3587–3593 (2008)CrossRefGoogle Scholar
  37. 37.
    Lepró, X., Lima, M.D., Baughman, R.H.: Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48, 3621–3627 (2010)CrossRefGoogle Scholar
  38. 38.
    Li, Y.-L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)Google Scholar
  39. 39.
    Stano, K.L., Koziol, K., Pick, M., Motta, M.S., Moisala, A., Vilatela, J.J., Frasier, S., Windle, A.H.: Direct spinning of carbon nanotube fibres from liquid feedstock. Int. J. Mater. Form. 1, 59–62 (2008)CrossRefGoogle Scholar
  40. 40.
    Gilvaei, A.F., Hirahara, K., Nakayama, Y.: In situ study of the carbon nanotube yarn drawing process. Carbon 49, 4928–4935 (2011)CrossRefGoogle Scholar
  41. 41.
    Behabtu, N., Green, M.J., Pasquali, M.: Carbon nanotube-based neat fibers. Nanotoday 3(5–6), 24–34 (2008)Google Scholar
  42. 42.
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon Nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)CrossRefGoogle Scholar
  43. 43.
    Vairavapandian, D., Vichchulada, P., Lay, M.D.: Preparation and modification of carbon nanotubes: review of recent advances and applications in catalyst and sensing. Anal. Chim. Acta 626(2), 119–129 (2008)CrossRefGoogle Scholar
  44. 44.
    Wisitsoraat, A., Karuwan, C., Wong-ek, K., Phokharatkul, D., Sritongkham, P., Tuantranont, A.: High sensitivity electrochemical cholesterol sensor utilizing a vertically aligned carbon nanotube electrode with electropolimerized enzyme immobilization. Sensor 9(11), 8658–8668 (2009)CrossRefGoogle Scholar
  45. 45.
    Sinha, N., Ma, J., Yeow, J.T.W.: Carbon nanotube-bases sensors. J. Nanosci. Nanotechnol. 6(3), 573–590 (2006)CrossRefGoogle Scholar
  46. 46.
    Jeong, H.E., Suh, K.Y.: Nanohairs and nanotubes: efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today 4(4), 335–346 (2009)CrossRefGoogle Scholar
  47. 47.
    Yurdumakan, B., Raravikar, N.R., Ajayan, P.M., Dhinojwala, A.: Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem. Commun. 30, 3799–3801 (2005)CrossRefGoogle Scholar
  48. 48.
    Ge, L., Sethl, S., Ci, L., Ajayan, P.M., Dhinjwala, A.: Carbon nanotube-based synthetic gecko tapes. PNAS 26(104), 10792–10795 (2007)CrossRefGoogle Scholar
  49. 49.
    Li, X.-M., Reinhoudt, D., Crego-Calama, M.: What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 8(36), 1350–1368 (2007)CrossRefGoogle Scholar
  50. 50.
    Ramos, S.C., Vasconcelos, G., Antunes, E.F., Logo, A.O., Trava-Airoldi, V.J., Corat, E.J.: Wettability control on vertically-aligned multi-walled carbon nanotube surfaces with oxygen pulsed DC plasma and CO2 laser treatments. Diam. Relat. Mater. 19(7–9), 752–755 (2009)Google Scholar
  51. 51.
    Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., Gleason, K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), 1701–1705 (2003)CrossRefGoogle Scholar
  52. 52.
    Bu, I.Y.Y., Oei, S.P.: Hydrophobic vertically aligned carbon nanotubes on corning glass for self cleaning applications. Appl. Surf. Sci. 256(22), 6699–6704 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Escola de EngenhariaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations