CNTs/TiO2 Composites

  • Silvana Da DaltEmail author
  • Annelise Kopp Alves
  • Carlos Pérez Bergmann
Part of the Carbon Nanostructures book series (CARBON, volume 3)


Titanium dioxide (TiO2) is a semiconductor material that is widely used in many different areas, such as gas sensors, air purification, catalysis, solar to electric energy conversion, photoelectrochemical systems and photocatalyst for degrading a wide range of organic pollutants because of its nontoxicity, photochemical stability, and low cost. There are reports that show that the heterojunction of TiO2 and carbon nanotubes (CNTs) improves the efficiency of the photocatalytic activity, mainly because the recombination of the photogenerated electron–hole pairs becomes more difficult in the presence of nanotubes. Multi-wall carbon nanotubes/TiO2 (MWCNT/TiO2) composite materials have been attracting attention in relation to their use in the treatment of contaminated water and air by heterogeneous photocatalysis, hydrogen evolution, CO2 photo-reduction, and dye sensitized solar cells. Nevertheless, functionalization routes to aggregate these materials and characterization methods need to be studied; since they have direct influence on properties and potential applications.


Carbon nanotubes Photocatalysis Titanium oxide 



Atomic Force Microscopy




Carbon Nanotubes


Energy Dispersive X Ray


Field Emission Scanning Electron Microscopy


Fourier Transformer Infrared


Heterogeneous Photocatalytic Oxidation


Methylene Blue


Methyl Orange


Multi-Walled Carbon Nanotubes


Single-Walled Carbon Nanotubes


Scanning Electron Microscopy


Transmission Electron Microscopy


Thermo Gravimetric Analysis




X Ray Diffraction


  1. 1.
    Seeger, T., Redlich, Ph., Grobert, N., et al.: SiOx-coating of carbon nanotubes at room temperature. Chem. Phys. Lett. 339, 41–46 (2001)CrossRefGoogle Scholar
  2. 2.
    Oh, W.C., Chen, M.L.: Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and titanium (IV) n-butoxide. Bull. Korean Chem. Soc. 29, 159–164 (2008)CrossRefGoogle Scholar
  3. 3.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: buckminsterfullerene. Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  4. 4.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33, 883–891 (1995)CrossRefGoogle Scholar
  5. 5.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  6. 6.
    Ajayan, P.M., Zhou, O.Z.: Carbon nanotubes, topics appl. phys. 80. In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds.) Applications of carbon nanotubes, Springer-Verlag, New York (2001)Google Scholar
  7. 7.
    Hou, P.X., Liu, C., Cheng, H.M.: Purification of carbon nanotubes. Carbon 46, 2003–2025 (2008)CrossRefGoogle Scholar
  8. 8.
    Hillert, M., Lange, N.: The structure of graphite filaments. Z. Kristallogr. 111, 24–34 (1958)CrossRefGoogle Scholar
  9. 9.
    Iijima, S., Ichibashi, T.: Single shell carbon nanotubes of one nanometer diameter. Nature 363, 603–605 (1993)CrossRefGoogle Scholar
  10. 10.
    Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253, 337–358 (2003)CrossRefGoogle Scholar
  11. 11.
    Chen, M.L., Zhang, F.J., Oh, W.C.: Synthesis, characterization, and photo catalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater. 24, 159–166 (2009)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Saint-Gobain Glass France.: Substrate with a self-cleaning coating. Patent WO 2003/087002 (2003)Google Scholar
  14. 14.
    Funakoshi, K., Nonami, T.: Photocatalytic treatments on dental mirror surfaces using hydrolysis of titanium alkoxide. J. Coat. Technol. Res. 4, 327–333 (2007)CrossRefGoogle Scholar
  15. 15.
    Chung, C.J., Lin, H., Tsou, H.-K., Shi, Z.-Y., He, J.-L.: An antimicrobial TiO2 coating for reducing hospital-acquired infection. J. Biomed. Mater. Res. B Appl. Biomater. 85B(1), 220–224 (2007)Google Scholar
  16. 16.
    Veronovski, N., Rudolf, A., Smole, M.S., Kreže, T., Geršak, J.: Self-cleaning and handle properties of TiO2-modified textiles. Fibers Polym. 10, 551–556 (2009)CrossRefGoogle Scholar
  17. 17.
    Hashimoto, K., Irie, H., Fujishima, A.: TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005)CrossRefGoogle Scholar
  18. 18.
    Shen, G., Chen, P.C., Ryu, K., Zhou, C.: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828–839 (2009)CrossRefGoogle Scholar
  19. 19.
    Haggfeldt, A., Bjorksten, U., Lindquist, S.E.: Photoelectrochemical studies of colloidal TiO2-films: the charge separation process studied by means of action spectra in the UV region. Sol. Energy Mater. Sol. Cells 27, 293–304 (1992)CrossRefGoogle Scholar
  20. 20.
    Hermass, J.M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)CrossRefGoogle Scholar
  21. 21.
    Ha, H.K., Yosimoto, M., Koinuma, H., Moon, B., Ishiwara, H.: Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films. Appl. Phys. Lett. 68, 2965–2967 (1996)CrossRefGoogle Scholar
  22. 22.
    Bahtat, A., Bouderbala, M., Bahtat, M., Bouazaoui, M., Mugnier, J., Druetta, M.: Structural characterisation of Er3+ doped sol-gel TiO2 planar optical waveguides. Thin Solid Films 323, 59–62 (1998)CrossRefGoogle Scholar
  23. 23.
    Desu, S.B.: Ultra-thin TiO2 films by a novel method. Mater. Sci. Eng. B 13, 299–303 (1992)CrossRefGoogle Scholar
  24. 24.
    Sato, T., Taya, M.: Copper-aided photosterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp. Biochem. Eng. J. 30, 199–204 (2006)CrossRefGoogle Scholar
  25. 25.
    Tamai, H., Katsu, N., Ono, K., Yasuda, H.: Simple preparation of TiO2 particles dispersed activated carbons and their photo-sterilization activity. J. Mater. Sci. 37, 3175–3180 (2002)CrossRefGoogle Scholar
  26. 26.
    Ditta, I.B., Steele, A., Liptrot, C., Tobin, J., Tyler, H., Yates, H.M., Sheel, D.W., Foste, H.A.: Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl. Microbiol. Biotechnol. 79, 127–133 (2008)CrossRefGoogle Scholar
  27. 27.
    Lei, S., Guo, G., Xiong, B., Gong, W., Mei, G.: Disruption of bacterial cells by photocatalysis of montmorillonite supported titanium dioxide. J. Wuhan Univ. Technol. Mat. Sci. Ed. 24, 557–561 (2009)CrossRefGoogle Scholar
  28. 28.
    Cui, H., Jiang, J., Gu, W., Sun, C., Wu, D., Yang, T., Yang, G.: Photocatalytic inactivation efficiency of anatase nano-TiO2 sol on the H9N2 avian influenza virus. Photochem. Photobiol. 86, 1135–1139 (2010)CrossRefGoogle Scholar
  29. 29.
    Byrne, J.: Using nanotechnology to improve photocatalytic efficiencies for water treatment. (2009)
  30. 30.
    Su-juan, Z., Ling-fang, Y., Dan, S., Ying-jie, W.: Effect of Cs+, Ag+, Fe³+ doping and Ag+, Fe³+ co-doping contents on photocatalytic activity of TiO2 films. 2011 symposium on photonics and optoelectronics (SOPO), Wuhan, China (2011)Google Scholar
  31. 31.
    Dang, TMD., Le, D.D., Chau, V.T., Dang, M.C.: Visible-light photocatalytic activity of N/SiO2–TiO2 thin films on glass. Adv. Nat. Sci: Nanosci. Nanotechnol. 015004, 5 (2010)Google Scholar
  32. 32.
    Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S., Ohashi, N.: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579–584 (2005)CrossRefGoogle Scholar
  33. 33.
    Li, D., Ohashi, N., Hishita, S., Kolodiazhnyi, T., Haneda, H.: Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J. Solid State Chem. 178, 3293–3302 (2005)CrossRefGoogle Scholar
  34. 34.
    Fan, H.J., Lu, C.S., Lee, W.L.W., Chiou, M.R., Chen, C.C.: Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. J. Hazard. Mater. 185, 227–235 (2011)CrossRefGoogle Scholar
  35. 35.
    Luo, Y., Heng, Y., Dai, X., Chen, W., Li, J.: Preparation and photocatalytic ability of highly defective carbon nanotubes. J. Solid State Chem. 182, 2521–2525 (2009)CrossRefGoogle Scholar
  36. 36.
    Gao, Y., Liu, H., Ma, M.: Preparation and photocatalytic behavior of TiO2-carbon nanotube hybrid catalyst for acridine dye decomposition. React. Kinet. Catal. Lett. 90, 11–18 (2007)CrossRefGoogle Scholar
  37. 37.
    Hu, G., Meng, X., Feng, X., Ding, Y., Zhang, S., Yang, M.: Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. Mater. Sci. 42, 7162–7170 (2007)CrossRefGoogle Scholar
  38. 38.
    Wang, Q., Yang, D., Chen, D., Wang, Y., Jiang, Z.: Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process. J. Nanopart. Res. 9, 1087–1096 (2007)CrossRefGoogle Scholar
  39. 39.
    Meng, L., Fu, C., Lu, Q.: Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRefGoogle Scholar
  40. 40.
    Cveticanin, J., Krkljes, A., Kacarevic-Popovic, Z., et al.: Functionalization of carbon nanotubes with silver clusters. Appl. Surf. Sci. 256, 7048–7055 (2010)CrossRefGoogle Scholar
  41. 41.
    Jeong, G.H.: Surface functionalization of single-walled carbon nanotubes using metal nanoparticles. Trans. Nonferr. Met. Soc. China 19, 1009–1012 (2009)CrossRefGoogle Scholar
  42. 42.
    Xu, G., Zhu, B., Han, Y., Bo, Z.: Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer 48, 7510–7515 (2007)CrossRefGoogle Scholar
  43. 43.
    Zhou, Z., Wang, S., Lu, L., Zhang, Y., Zhang, Y.: Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites. Compos. Sci. Technol. 68, 1727–1733 (2008)CrossRefGoogle Scholar
  44. 44.
    Yang, F., Li, Y., Zhang, S., Tao, M., Zhao, J., Hang, C.: Functionalization of multiwalled carbon nanotubes and related polyimide/carbon nanotubes composites. Synth. Met. 160, 1805–1808 (2010)CrossRefGoogle Scholar
  45. 45.
    Chang, C.M., Liu, Y.L.: Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48, 1289–1297 (2010)CrossRefGoogle Scholar
  46. 46.
    Singh, K.V., Pandey, R.R., Wang, X., et al.: Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: nanocomponents for molecular level electronics. Carbon 44, 1730–1739 (2006)CrossRefGoogle Scholar
  47. 47.
    Ye, J.S., Liu, A.L.: Functionalization of carbon nanotubes and nanoparticles with lipid. Adv. Planar Lipid Bilayers Liposomes 8, 201–224 (2008)CrossRefGoogle Scholar
  48. 48.
    Zhang, W., Silva, S.R.P.: Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scripta Mater. 63, 645–648 (2010)CrossRefGoogle Scholar
  49. 49.
    Saleh, T.A., Gupta, V.K.: Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362, 337–344 (2011)CrossRefGoogle Scholar
  50. 50.
    Gao, B., Chen, G.Z., Li Puma, G.: Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B 89, 503–509 (2009)CrossRefGoogle Scholar
  51. 51.
    Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Béguin, F., Bonnamy, S.: Synthesis and characterization of carbon nanotubes—TiO2 nanocomposites. Carbon 42, 1147–1151 (2004)CrossRefGoogle Scholar
  52. 52.
    Aryal, S., Kim, C.H., Kim, K.W., Khil, M.S., Kim, H.Y.: Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater. Sci. Eng. C 28, 75–79 (2008)CrossRefGoogle Scholar
  53. 53.
    Sampaio, M.J., Silva, C.G., Marques, R.R.N., Silva, A.M.T., Faria, J.L.: Carbon nanotube–TiO2 thin films for photocatalytic applications. Catal. Today 161, 91–96 (2001)CrossRefGoogle Scholar
  54. 54.
    Chen, L., Zhang, B.L., Qu, M.Z., Yu, Z.L.: Preparation and characterization of CNTs–TiO2 composites. Powder Technol. 154, 70–72 (2005)CrossRefGoogle Scholar
  55. 55.
    Jiang, G., Zheng, X., Wang, Y., Li, T., Sun, X.: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol. 207, 465–469 (2011)CrossRefGoogle Scholar
  56. 56.
    Belin, T., Epron, F.: Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. B 119, 105–118 (2005)CrossRefGoogle Scholar
  57. 57.
    Xu, J.M., Zhang, X.B., Li, Y., Tao, X.Y., Chen, F., Li, T., Bao, Y., Geise, H.J.: Preparation of Mg1−xFexMoO4 catalyst and its application to grow MWNTs with high efficiency. Diam. Relat. Mater. 13, 1807–1811 (2004)CrossRefGoogle Scholar
  58. 58.
    Yu, Y., Yu, J.C., Yu, J.G., et al.: Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 289, 186–196 (2005)CrossRefGoogle Scholar
  59. 59.
    Hu, C., Duo, S., Zhang, R., Li, M., Xiang, J., Li, W.: Nanocrystalline anatase TiO2 prepared via a facile low temperature route. Mater. Lett. 64, 2040–2042 (2010)CrossRefGoogle Scholar
  60. 60.
    Wang, S., Zhou, S.: Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J. Hazard. Mater. 185, 77–85 (2011)CrossRefGoogle Scholar
  61. 61.
    Wang, W., Serp, P., Kalck, P., et al.: Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater. Res. Bull. 43, 958–967 (2008)CrossRefGoogle Scholar
  62. 62.
    Bouazza, N., Ouzzine, M., Lillo-Ródenas, M.A., Eder, D., Linares-Solano.: TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl. Catal. B 92, 377–383 (2009)CrossRefGoogle Scholar
  63. 63.
    Zhang, K., Zhang, F.J., Chen, M.L., Oh, W.C.: Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts. Ultrason. Sonochem. 18, 765–772 (2011)CrossRefGoogle Scholar
  64. 64.
    Zevellos-Márquez, A.M.O., Brasil, M.J.S.P., Likawa, F., et al.: Effect of TiO2 nanoparticles on the thermal properties of decorated multiwall carbon nanotubes: a Raman investigation. J. App. Phys. 108, 083501 (2010)CrossRefGoogle Scholar
  65. 65.
    Zhou, W., Pan, K., Qu, Y., et al.: Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere 81, 555–561 (2010)CrossRefGoogle Scholar
  66. 66.
    Hu, C., et al.: Synthesis of carbon nanotube/anatase tiatania comby a combination of sol-gel and self-assembly at low temperature. J. Sol. Sta. Chem. 184, 1286–1292 (2011)CrossRefGoogle Scholar
  67. 67.
    Chen, L.C., Ho, Y.C., Guo, W.S., Huang, C.M., Pan, T.C.: Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochim. Acta 54, 3884–3891 (2009)CrossRefGoogle Scholar
  68. 68.
    Orlanducci, S., Sessa, V., Terranova, M.L., Battiston, G.A., Battiston, S., Gerbasi, R.: Nanocrystalline TiO2 on single walled carbon nanotube arrays: towards the assembly of organized C/TiO2 nanosystems. Carbon 44, 2839–2843 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Silvana Da Dalt
    • 1
    • 2
    Email author
  • Annelise Kopp Alves
    • 2
  • Carlos Pérez Bergmann
    • 2
  1. 1.Av. OsvaldoPorto AlegreBrazil
  2. 2.Escola de EngenhariaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations