Skip to main content

CNTs/TiO2 Composites

  • Chapter
  • First Online:
NanoCarbon 2011

Part of the book series: Carbon Nanostructures ((CARBON,volume 3))

Abstract

Titanium dioxide (TiO2) is a semiconductor material that is widely used in many different areas, such as gas sensors, air purification, catalysis, solar to electric energy conversion, photoelectrochemical systems and photocatalyst for degrading a wide range of organic pollutants because of its nontoxicity, photochemical stability, and low cost. There are reports that show that the heterojunction of TiO2 and carbon nanotubes (CNTs) improves the efficiency of the photocatalytic activity, mainly because the recombination of the photogenerated electron–hole pairs becomes more difficult in the presence of nanotubes. Multi-wall carbon nanotubes/TiO2 (MWCNT/TiO2) composite materials have been attracting attention in relation to their use in the treatment of contaminated water and air by heterogeneous photocatalysis, hydrogen evolution, CO2 photo-reduction, and dye sensitized solar cells. Nevertheless, functionalization routes to aggregate these materials and characterization methods need to be studied; since they have direct influence on properties and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic Force Microscopy

BET:

Brunauer–Emmett–Teller

CNTs:

Carbon Nanotubes

EDX:

Energy Dispersive X Ray

FESEM:

Field Emission Scanning Electron Microscopy

FT-IR:

Fourier Transformer Infrared

HPO:

Heterogeneous Photocatalytic Oxidation

MB:

Methylene Blue

MO:

Methyl Orange

MWCNT:

Multi-Walled Carbon Nanotubes

SWCNT:

Single-Walled Carbon Nanotubes

SEM:

Scanning Electron Microscopy

TEM:

Transmission Electron Microscopy

TGA:

Thermo Gravimetric Analysis

UV:

Ultraviolet

XRD:

X Ray Diffraction

References

  1. Seeger, T., Redlich, Ph., Grobert, N., et al.: SiOx-coating of carbon nanotubes at room temperature. Chem. Phys. Lett. 339, 41–46 (2001)

    Article  CAS  Google Scholar 

  2. Oh, W.C., Chen, M.L.: Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and titanium (IV) n-butoxide. Bull. Korean Chem. Soc. 29, 159–164 (2008)

    Article  CAS  Google Scholar 

  3. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  4. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33, 883–891 (1995)

    Article  CAS  Google Scholar 

  5. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  6. Ajayan, P.M., Zhou, O.Z.: Carbon nanotubes, topics appl. phys. 80. In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds.) Applications of carbon nanotubes, Springer-Verlag, New York (2001)

    Google Scholar 

  7. Hou, P.X., Liu, C., Cheng, H.M.: Purification of carbon nanotubes. Carbon 46, 2003–2025 (2008)

    Article  CAS  Google Scholar 

  8. Hillert, M., Lange, N.: The structure of graphite filaments. Z. Kristallogr. 111, 24–34 (1958)

    Article  CAS  Google Scholar 

  9. Iijima, S., Ichibashi, T.: Single shell carbon nanotubes of one nanometer diameter. Nature 363, 603–605 (1993)

    Article  CAS  Google Scholar 

  10. Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253, 337–358 (2003)

    Article  CAS  Google Scholar 

  11. Chen, M.L., Zhang, F.J., Oh, W.C.: Synthesis, characterization, and photo catalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater. 24, 159–166 (2009)

    Article  CAS  Google Scholar 

  12. http://www.aerosil.com/product/aerosil/en/effects/photocatalyst

  13. Saint-Gobain Glass France.: Substrate with a self-cleaning coating. Patent WO 2003/087002 (2003)

    Google Scholar 

  14. Funakoshi, K., Nonami, T.: Photocatalytic treatments on dental mirror surfaces using hydrolysis of titanium alkoxide. J. Coat. Technol. Res. 4, 327–333 (2007)

    Article  CAS  Google Scholar 

  15. Chung, C.J., Lin, H., Tsou, H.-K., Shi, Z.-Y., He, J.-L.: An antimicrobial TiO2 coating for reducing hospital-acquired infection. J. Biomed. Mater. Res. B Appl. Biomater. 85B(1), 220–224 (2007)

    Google Scholar 

  16. Veronovski, N., Rudolf, A., Smole, M.S., Kreže, T., Geršak, J.: Self-cleaning and handle properties of TiO2-modified textiles. Fibers Polym. 10, 551–556 (2009)

    Article  CAS  Google Scholar 

  17. Hashimoto, K., Irie, H., Fujishima, A.: TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005)

    Article  CAS  Google Scholar 

  18. Shen, G., Chen, P.C., Ryu, K., Zhou, C.: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828–839 (2009)

    Article  CAS  Google Scholar 

  19. Haggfeldt, A., Bjorksten, U., Lindquist, S.E.: Photoelectrochemical studies of colloidal TiO2-films: the charge separation process studied by means of action spectra in the UV region. Sol. Energy Mater. Sol. Cells 27, 293–304 (1992)

    Article  Google Scholar 

  20. Hermass, J.M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999)

    Article  Google Scholar 

  21. Ha, H.K., Yosimoto, M., Koinuma, H., Moon, B., Ishiwara, H.: Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films. Appl. Phys. Lett. 68, 2965–2967 (1996)

    Article  CAS  Google Scholar 

  22. Bahtat, A., Bouderbala, M., Bahtat, M., Bouazaoui, M., Mugnier, J., Druetta, M.: Structural characterisation of Er3+ doped sol-gel TiO2 planar optical waveguides. Thin Solid Films 323, 59–62 (1998)

    Article  CAS  Google Scholar 

  23. Desu, S.B.: Ultra-thin TiO2 films by a novel method. Mater. Sci. Eng. B 13, 299–303 (1992)

    Article  Google Scholar 

  24. Sato, T., Taya, M.: Copper-aided photosterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp. Biochem. Eng. J. 30, 199–204 (2006)

    Article  CAS  Google Scholar 

  25. Tamai, H., Katsu, N., Ono, K., Yasuda, H.: Simple preparation of TiO2 particles dispersed activated carbons and their photo-sterilization activity. J. Mater. Sci. 37, 3175–3180 (2002)

    Article  CAS  Google Scholar 

  26. Ditta, I.B., Steele, A., Liptrot, C., Tobin, J., Tyler, H., Yates, H.M., Sheel, D.W., Foste, H.A.: Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl. Microbiol. Biotechnol. 79, 127–133 (2008)

    Article  CAS  Google Scholar 

  27. Lei, S., Guo, G., Xiong, B., Gong, W., Mei, G.: Disruption of bacterial cells by photocatalysis of montmorillonite supported titanium dioxide. J. Wuhan Univ. Technol. Mat. Sci. Ed. 24, 557–561 (2009)

    Article  CAS  Google Scholar 

  28. Cui, H., Jiang, J., Gu, W., Sun, C., Wu, D., Yang, T., Yang, G.: Photocatalytic inactivation efficiency of anatase nano-TiO2 sol on the H9N2 avian influenza virus. Photochem. Photobiol. 86, 1135–1139 (2010)

    Article  CAS  Google Scholar 

  29. Byrne, J.: Using nanotechnology to improve photocatalytic efficiencies for water treatment. http://www.azonano.com/article.aspx?ArticleID=2410. (2009)

  30. Su-juan, Z., Ling-fang, Y., Dan, S., Ying-jie, W.: Effect of Cs+, Ag+, Fe³+ doping and Ag+, Fe³+ co-doping contents on photocatalytic activity of TiO2 films. 2011 symposium on photonics and optoelectronics (SOPO), Wuhan, China (2011)

    Google Scholar 

  31. Dang, TMD., Le, D.D., Chau, V.T., Dang, M.C.: Visible-light photocatalytic activity of N/SiO2–TiO2 thin films on glass. Adv. Nat. Sci: Nanosci. Nanotechnol. 015004, 5 (2010)

    Google Scholar 

  32. Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S., Ohashi, N.: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579–584 (2005)

    Article  CAS  Google Scholar 

  33. Li, D., Ohashi, N., Hishita, S., Kolodiazhnyi, T., Haneda, H.: Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J. Solid State Chem. 178, 3293–3302 (2005)

    Article  CAS  Google Scholar 

  34. Fan, H.J., Lu, C.S., Lee, W.L.W., Chiou, M.R., Chen, C.C.: Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. J. Hazard. Mater. 185, 227–235 (2011)

    Article  CAS  Google Scholar 

  35. Luo, Y., Heng, Y., Dai, X., Chen, W., Li, J.: Preparation and photocatalytic ability of highly defective carbon nanotubes. J. Solid State Chem. 182, 2521–2525 (2009)

    Article  CAS  Google Scholar 

  36. Gao, Y., Liu, H., Ma, M.: Preparation and photocatalytic behavior of TiO2-carbon nanotube hybrid catalyst for acridine dye decomposition. React. Kinet. Catal. Lett. 90, 11–18 (2007)

    Article  CAS  Google Scholar 

  37. Hu, G., Meng, X., Feng, X., Ding, Y., Zhang, S., Yang, M.: Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. Mater. Sci. 42, 7162–7170 (2007)

    Article  CAS  Google Scholar 

  38. Wang, Q., Yang, D., Chen, D., Wang, Y., Jiang, Z.: Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process. J. Nanopart. Res. 9, 1087–1096 (2007)

    Article  CAS  Google Scholar 

  39. Meng, L., Fu, C., Lu, Q.: Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)

    Article  CAS  Google Scholar 

  40. Cveticanin, J., Krkljes, A., Kacarevic-Popovic, Z., et al.: Functionalization of carbon nanotubes with silver clusters. Appl. Surf. Sci. 256, 7048–7055 (2010)

    Article  CAS  Google Scholar 

  41. Jeong, G.H.: Surface functionalization of single-walled carbon nanotubes using metal nanoparticles. Trans. Nonferr. Met. Soc. China 19, 1009–1012 (2009)

    Article  CAS  Google Scholar 

  42. Xu, G., Zhu, B., Han, Y., Bo, Z.: Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer 48, 7510–7515 (2007)

    Article  CAS  Google Scholar 

  43. Zhou, Z., Wang, S., Lu, L., Zhang, Y., Zhang, Y.: Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites. Compos. Sci. Technol. 68, 1727–1733 (2008)

    Article  CAS  Google Scholar 

  44. Yang, F., Li, Y., Zhang, S., Tao, M., Zhao, J., Hang, C.: Functionalization of multiwalled carbon nanotubes and related polyimide/carbon nanotubes composites. Synth. Met. 160, 1805–1808 (2010)

    Article  CAS  Google Scholar 

  45. Chang, C.M., Liu, Y.L.: Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48, 1289–1297 (2010)

    Article  CAS  Google Scholar 

  46. Singh, K.V., Pandey, R.R., Wang, X., et al.: Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: nanocomponents for molecular level electronics. Carbon 44, 1730–1739 (2006)

    Article  CAS  Google Scholar 

  47. Ye, J.S., Liu, A.L.: Functionalization of carbon nanotubes and nanoparticles with lipid. Adv. Planar Lipid Bilayers Liposomes 8, 201–224 (2008)

    Article  CAS  Google Scholar 

  48. Zhang, W., Silva, S.R.P.: Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scripta Mater. 63, 645–648 (2010)

    Article  CAS  Google Scholar 

  49. Saleh, T.A., Gupta, V.K.: Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362, 337–344 (2011)

    Article  CAS  Google Scholar 

  50. Gao, B., Chen, G.Z., Li Puma, G.: Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B 89, 503–509 (2009)

    Article  CAS  Google Scholar 

  51. Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Béguin, F., Bonnamy, S.: Synthesis and characterization of carbon nanotubes—TiO2 nanocomposites. Carbon 42, 1147–1151 (2004)

    Article  CAS  Google Scholar 

  52. Aryal, S., Kim, C.H., Kim, K.W., Khil, M.S., Kim, H.Y.: Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater. Sci. Eng. C 28, 75–79 (2008)

    Article  CAS  Google Scholar 

  53. Sampaio, M.J., Silva, C.G., Marques, R.R.N., Silva, A.M.T., Faria, J.L.: Carbon nanotube–TiO2 thin films for photocatalytic applications. Catal. Today 161, 91–96 (2001)

    Article  Google Scholar 

  54. Chen, L., Zhang, B.L., Qu, M.Z., Yu, Z.L.: Preparation and characterization of CNTs–TiO2 composites. Powder Technol. 154, 70–72 (2005)

    Article  CAS  Google Scholar 

  55. Jiang, G., Zheng, X., Wang, Y., Li, T., Sun, X.: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol. 207, 465–469 (2011)

    Article  CAS  Google Scholar 

  56. Belin, T., Epron, F.: Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. B 119, 105–118 (2005)

    Article  Google Scholar 

  57. Xu, J.M., Zhang, X.B., Li, Y., Tao, X.Y., Chen, F., Li, T., Bao, Y., Geise, H.J.: Preparation of Mg1−xFexMoO4 catalyst and its application to grow MWNTs with high efficiency. Diam. Relat. Mater. 13, 1807–1811 (2004)

    Article  CAS  Google Scholar 

  58. Yu, Y., Yu, J.C., Yu, J.G., et al.: Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 289, 186–196 (2005)

    Article  CAS  Google Scholar 

  59. Hu, C., Duo, S., Zhang, R., Li, M., Xiang, J., Li, W.: Nanocrystalline anatase TiO2 prepared via a facile low temperature route. Mater. Lett. 64, 2040–2042 (2010)

    Article  CAS  Google Scholar 

  60. Wang, S., Zhou, S.: Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J. Hazard. Mater. 185, 77–85 (2011)

    Article  CAS  Google Scholar 

  61. Wang, W., Serp, P., Kalck, P., et al.: Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater. Res. Bull. 43, 958–967 (2008)

    Article  CAS  Google Scholar 

  62. Bouazza, N., Ouzzine, M., Lillo-Ródenas, M.A., Eder, D., Linares-Solano.: TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl. Catal. B 92, 377–383 (2009)

    Article  CAS  Google Scholar 

  63. Zhang, K., Zhang, F.J., Chen, M.L., Oh, W.C.: Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts. Ultrason. Sonochem. 18, 765–772 (2011)

    Article  CAS  Google Scholar 

  64. Zevellos-Márquez, A.M.O., Brasil, M.J.S.P., Likawa, F., et al.: Effect of TiO2 nanoparticles on the thermal properties of decorated multiwall carbon nanotubes: a Raman investigation. J. App. Phys. 108, 083501 (2010)

    Article  Google Scholar 

  65. Zhou, W., Pan, K., Qu, Y., et al.: Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere 81, 555–561 (2010)

    Article  CAS  Google Scholar 

  66. Hu, C., et al.: Synthesis of carbon nanotube/anatase tiatania comby a combination of sol-gel and self-assembly at low temperature. J. Sol. Sta. Chem. 184, 1286–1292 (2011)

    Article  CAS  Google Scholar 

  67. Chen, L.C., Ho, Y.C., Guo, W.S., Huang, C.M., Pan, T.C.: Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochim. Acta 54, 3884–3891 (2009)

    Article  CAS  Google Scholar 

  68. Orlanducci, S., Sessa, V., Terranova, M.L., Battiston, G.A., Battiston, S., Gerbasi, R.: Nanocrystalline TiO2 on single walled carbon nanotube arrays: towards the assembly of organized C/TiO2 nanosystems. Carbon 44, 2839–2843 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Da Dalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Da Dalt, S., Alves, A.K., Bergmann, C.P. (2013). CNTs/TiO2 Composites. In: Avellaneda, C. (eds) NanoCarbon 2011. Carbon Nanostructures, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31960-0_6

Download citation

Publish with us

Policies and ethics