Advertisement

Performance of Ni/MgAl2O4 Catalyst Obtained by a Metal-Chitosan Complex Method in Methane Decomposition Reaction with Production of Carbon Nanotubes

  • G. B. Nuernberg
  • L. F. D. Probst
  • M. A. Moreira
  • C. E. M. Campos
Chapter
Part of the Carbon Nanostructures book series (CARBON, volume 3)

Abstract

This paper describes the synthesis of Ni/MgAl2O4 catalysts using a method developed by our group with the objective of obtaining a material with more homogeneous composition, more porous structure and greater surface area compared with other spinel preparation methods. The performance of the material obtained was evaluated in the catalytic decomposition of methane, which is a potential alternative route for obtaining pure hydrogen and valuable carbonaceous materials. The textural properties of the catalyst were investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms (BET and BJH methods), and temperature-programmed reduction (TPR) analysis. The nature of the carbon deposits was investigated by thermogravimetric analysis (TGA), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The influence of the operating conditions on the characteristics of the carbon deposited was studied. The results demonstrated the efficiency of the catalyst in this reaction with the formation of CNTs, irrespective of the operating conditions employed. In general, multiple-walled nanotubes (MWCNTs) were preferentially obtained, and when a diluted flow of CH4 was used the CNTs presented a greater degree of graphitization.

Keywords

Magnesium aluminate spinel Metal-chitosan complex Methane decomposition Carbon nanotubes 

Notes

Acknowledgments

The authors are grateful to Universidade Federal de Santa Catarina (UFSC) for access to facilities including LCME, LDRX and LabMat, and to the Brazilian government agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

References

  1. 1.
    Bocanegra, S.A., Ballarini, A.D., Scelza, O.A., Miguel, S.R.: The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Mater. Chem. Phys. 111, 534–541 (2008). doi: 10.1016/j.matchemphys.2008.05.002 CrossRefGoogle Scholar
  2. 2.
    Folleto, E., Alves, R.W., Jahn, S.L.: Preparation of Ni/Pt catalysts supported on spinel (MgAl2O4) for methane reforming. J. Power Sour. 161, 531–534 (2006). doi: 10.1016/j.jpowsour.2006.04.121 CrossRefGoogle Scholar
  3. 3.
    Kong, L.B., Ma, J., Huang, H.: MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process. Mater. Lett. 56, 238–243 (2002). doi: 10.1016/S0167-577X(02)00447-0 CrossRefGoogle Scholar
  4. 4.
    Nuernberg, G.B., Fajardo, H.V., Mezalira, D.Z., Casarin, T.J., Probst, L.F.D., Carreño, N.L.V.: Preparation and evaluation of Co/Al2O3 catalysts in the production of hydrogen from thermo-catalytic decomposition of methane: Influence of operating conditions on catalyst performance. Fuel 87, 1698–1704 (2008). doi: 10.1016/j.fuel.2007.08.005 CrossRefGoogle Scholar
  5. 5.
    Abbas, H.F., Wan Daud, W.M.A.: Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 35, 1160–1190 (2010). doi: 10.1016/j.ijhydene.2009.11.036 CrossRefGoogle Scholar
  6. 6.
    Botas, J.A., Serrano, D.P., Guil-López, R., Pizarro, P., Gómez, G.: Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production. Int. J. Hydrogen Energy 35, 9788–9794 (2010). doi: 10.1016/j.ijhydene.2009.10.031 CrossRefGoogle Scholar
  7. 7.
    Pinilla, J.L., Suelves, I., Lázaro, M.J., Moliner, R., Palacios, J.M.: Parametric study of the decomposition of methane using a NiCu/Al2O3 catalyst in a fluidized bed reactor. Int. J. Hydrogen Energy 35, 9801–9809 (2010). doi: 10.1016/j.ijhydene.2009.10.008 CrossRefGoogle Scholar
  8. 8.
    Li, Y., Li, D., WANG, G.: Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catal. Today 162, 1–48 (2011). doi: 10.1016/j.cattod.2010.12.042 CrossRefGoogle Scholar
  9. 9.
    Figueiredo, J.L., Ribeiro, F.R.: Catálise Heterogênea. Fundação Calouste Gulbenkian, Lisboa (1989)Google Scholar
  10. 10.
    Norinaga, K., Huttinger, K.J.: Kinetics of surface reactions in carbon deposition from light hydrocarbons. Carbon 41, 1509–1514 (2003). doi: 10.1016/S0008-6223(03)00097-6 CrossRefGoogle Scholar
  11. 11.
    Paschoalino, M.P., Marcone, G.P.S., Jardim, W.F.: Os nanomateriais e a questão ambiental. Quim. Nova 33, 421–430 (2010). doi: 10.1590/S0100-40422010000200033 CrossRefGoogle Scholar
  12. 12.
    Schnorr, J.M., Swager, T.M.: Emerging applications of carbon nanotubes. Chem. Mater. 23, 646–657 (2011). doi: 10.1021/cm102406h CrossRefGoogle Scholar
  13. 13.
    Zarbin, A.J.G.: Química de (nano)materiais. Quim. Nova 30(6), 1469–1479 (2007). doi: 10.1590/S0100-40422007000600016 CrossRefGoogle Scholar
  14. 14.
    Maccallini, E., Tsoufis, T., Policicchio, A., La Rosa, S., Caruso, T., Chiarello, G., Colavita, E., Formoso, V., Gournis, D., Agostino, R.G.: A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon 48, 3434–3445 (2010). doi: 10.1016/j.carbon.2010.05.039 CrossRefGoogle Scholar
  15. 15.
    Larson, AC., Von Dreele, RB.: General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748 (2000)Google Scholar
  16. 16.
    Toby, B.H.: A graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). doi: 10.1107/S0021889801002242 CrossRefGoogle Scholar
  17. 17.
    Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum. FIZ, Karlsruhe (2007)Google Scholar
  18. 18.
    Shiono, T., Shiono, K., Miyamoto, K., Pezzotti, G.: Synthesis and characterization of MgAl2O4 spinel precursor from a heterogeneous Alkoxide solution containing fine MgO powder. J. Am. Ceram. Soc. 83, 235–237 (2000). doi: 10.1111/j.1151-2916.2000.tb01180.x CrossRefGoogle Scholar
  19. 19.
    Monzón, A., Latorre, N., Ubieto, T., Royo, C., Romeo, E., Villacampa, J.I., Dussault, L., Dupin, J.C., Guimon, C., Montioux, M.: Improvement of activity and stability of Ni–Mg–Al catalysts by Cu addition during hydrogen production by catalytic decomposition of methane. Catal. Today 116, 264–270 (2006). doi: 10.1016/j.cattod.2006.05.085 CrossRefGoogle Scholar
  20. 20.
    Teixeira, V.G., Coutinho, F.M.B., Gomes, A.S.: Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Quim. Nova 24(6), 808–818 (2001). doi: 10.1590/S0100-40422001000600019 CrossRefGoogle Scholar
  21. 21.
    Silva, JB.: Caracterização de materiais catalíticos. Qualificação de Doutorado, Instituto Nacional de Pesquisas Espaciais (INPE). (2008)Google Scholar
  22. 22.
    Ozdemir, H., Oksuzomer, M.A.F., Gurkaynak, M.A.: Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition. Int. J. Hydrogen Energy 35, 12147–12160 (2010). doi: 10.1016/j.ijhydene.2010.08.091 CrossRefGoogle Scholar
  23. 23.
    Park, D.S., Li, Z., Devianto, H., Lee, H.: Characteristics of alkali-resistant Ni/MgAl2O4 catalyst for direct internal reforming molten carbonate fuel cell. Int. J. Hydrogen Energy 35, 5673–5680 (2010). doi: 10.1016/j.ijhydene.2010.03.043 CrossRefGoogle Scholar
  24. 24.
    Zeng, L., Wang, W., Lei, D., Liang, J., Zhao, H., Zhao, J., Kong, X.: High-field electron emission of carbon nanotubes grown on carbon fibers. Phys. B 403, 2662–2665 (2008). doi: 10.1016/j.physb.2008.01.032 CrossRefGoogle Scholar
  25. 25.
    Herbst, M.H., Macêdo, M.I.F., Rocco, A.M.: Tecnologia dos nanotubos de carbono: tendências e perspectivas de uma área multidisciplinar. Quim. Nova 27(6), 986–992 (2004). doi: 10.1590/S0100-40422004000600025 CrossRefGoogle Scholar
  26. 26.
    Fu, J., Huang, Y., Pan, Y., Zhu, Y., Huang, X., Tang, X.: An attempt to prepare carbon nanotubes by carbonizing polyphosphazene nanotubes with high carbon content. Mater. Lett. 62, 4130–4133 (2008). doi: 10.1016/j.matlet.2008.06.020 CrossRefGoogle Scholar
  27. 27.
    Almeida, R.M., Fajardo, H.V., Mezalira, D.Z., Nuernberg, G.B., Noda, L.K., Probst, L.F.D., Carreño, N.L.V.: Preparation and evaluation of porous nickel-alumina spheres as catalyst in the production of hydrogen from decomposition of methane. J. Mol. Catal. A: Chem. 259, 328–335 (2006). doi: 10.1016/j.molcata.2006.07.044 CrossRefGoogle Scholar
  28. 28.
    Chen, C.M., Dai, Y.M., Huang, J.G., Jehng, J.M.: Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44, 1808–1820 (2006). doi: 10.1016/j.carbon.2005.12.043 CrossRefGoogle Scholar
  29. 29.
    Musumeci, A., Silva, G., Martens, W., Waclawik, E., Frost, R.: Thermal decomposition and electron microscopy studies of single-walled carbon nanotubes. J. Therm. Anal. Calorim. 88(3), 885–891 (2007). doi: 10.1007/s10973-006-7563-9 CrossRefGoogle Scholar
  30. 30.
    Ramesh, B.P., Blau, W.J., Tyagi, P.K., Misra, D.S., Ali, N., Gracio, J., Cabral, G., Titus, E.: Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. Thin Solid Films 494, 128–132 (2006). doi: 10.1016/j.tsf.2005.08.220 CrossRefGoogle Scholar
  31. 31.
    Suriani, A.B., Azira, A.A., Nik, S.F., Nor, R.M., Rusop, M.: Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater. Lett. 63, 2704–2706 (2009). doi: 10.1016/j.matlet.2009.09.048 CrossRefGoogle Scholar
  32. 32.
    Das, N., Dalai, A., Mohammadzadeh, J.S.S., Adjaye, J.: The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44, 2236–2245 (2006). doi: 10.1016/j.carbon.2006.02.040 CrossRefGoogle Scholar
  33. 33.
    Zarabadi-Poor, P., Badiei, A., Yousefi, A.A., Fahlman, B.D., Abbasi, A.: Catalytic chemical vapour deposition of carbon nanotubes using Fe-doped alumina catalysts. Catal. Today 150, 100–106 (2010). doi: 10.1016/j.cattod.2009.06.019 CrossRefGoogle Scholar
  34. 34.
    Hsieh, C., Lin, J., Wei, J.: Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes. Int. J. Hydrogen Energy 34, 685–693 (2009). doi: 10.1016/j.ijhydene.2008.11.008 CrossRefGoogle Scholar
  35. 35.
    Zhou, M., Lin, G., Zhang, H.: Pt Catalyst Supported on Multiwalled Carbon Nanotubes for Hydrogenation-Dearomatization of Toluene. Chin. J. Catal. 28(3), 210–216 (2007). doi: 10.1016/S1872-2067(07)60020-5 CrossRefGoogle Scholar
  36. 36.
    Guevara, J.C., Wang, J.A., Chen, L.F., Valenzuela, M.A., Salas, P., García-Ruiz, A., Toledo, A., Cortes-Jácome, M.A., Angeles-Chavez, C., Novaro, O.: Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. Int. J. Hydrogen Energy 35, 3509 (2010). doi: 10.1016/j.ijhydene.2010.01.068 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. B. Nuernberg
    • 1
  • L. F. D. Probst
    • 1
  • M. A. Moreira
    • 2
  • C. E. M. Campos
    • 1
  1. 1.CFMUniversidade Federal de Santa CatarinaFlorianópolis-SCBrazil
  2. 2.CAVUniversidade do Estado de Santa CatarinaLages-SCBrazil

Personalised recommendations