Skip to main content

Performance of Ni/MgAl2O4 Catalyst Obtained by a Metal-Chitosan Complex Method in Methane Decomposition Reaction with Production of Carbon Nanotubes

  • Chapter
  • First Online:
NanoCarbon 2011

Part of the book series: Carbon Nanostructures ((CARBON,volume 3))

  • 667 Accesses

Abstract

This paper describes the synthesis of Ni/MgAl2O4 catalysts using a method developed by our group with the objective of obtaining a material with more homogeneous composition, more porous structure and greater surface area compared with other spinel preparation methods. The performance of the material obtained was evaluated in the catalytic decomposition of methane, which is a potential alternative route for obtaining pure hydrogen and valuable carbonaceous materials. The textural properties of the catalyst were investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms (BET and BJH methods), and temperature-programmed reduction (TPR) analysis. The nature of the carbon deposits was investigated by thermogravimetric analysis (TGA), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The influence of the operating conditions on the characteristics of the carbon deposited was studied. The results demonstrated the efficiency of the catalyst in this reaction with the formation of CNTs, irrespective of the operating conditions employed. In general, multiple-walled nanotubes (MWCNTs) were preferentially obtained, and when a diluted flow of CH4 was used the CNTs presented a greater degree of graphitization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bocanegra, S.A., Ballarini, A.D., Scelza, O.A., Miguel, S.R.: The influence of the synthesis routes of MgAl2O4 on its properties and behavior as support of dehydrogenation catalysts. Mater. Chem. Phys. 111, 534–541 (2008). doi:10.1016/j.matchemphys.2008.05.002

    Article  CAS  Google Scholar 

  2. Folleto, E., Alves, R.W., Jahn, S.L.: Preparation of Ni/Pt catalysts supported on spinel (MgAl2O4) for methane reforming. J. Power Sour. 161, 531–534 (2006). doi:10.1016/j.jpowsour.2006.04.121

    Article  Google Scholar 

  3. Kong, L.B., Ma, J., Huang, H.: MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process. Mater. Lett. 56, 238–243 (2002). doi:10.1016/S0167-577X(02)00447-0

    Article  CAS  Google Scholar 

  4. Nuernberg, G.B., Fajardo, H.V., Mezalira, D.Z., Casarin, T.J., Probst, L.F.D., Carreño, N.L.V.: Preparation and evaluation of Co/Al2O3 catalysts in the production of hydrogen from thermo-catalytic decomposition of methane: Influence of operating conditions on catalyst performance. Fuel 87, 1698–1704 (2008). doi:10.1016/j.fuel.2007.08.005

    Article  CAS  Google Scholar 

  5. Abbas, H.F., Wan Daud, W.M.A.: Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 35, 1160–1190 (2010). doi:10.1016/j.ijhydene.2009.11.036

    Article  CAS  Google Scholar 

  6. Botas, J.A., Serrano, D.P., Guil-López, R., Pizarro, P., Gómez, G.: Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production. Int. J. Hydrogen Energy 35, 9788–9794 (2010). doi:10.1016/j.ijhydene.2009.10.031

    Article  CAS  Google Scholar 

  7. Pinilla, J.L., Suelves, I., Lázaro, M.J., Moliner, R., Palacios, J.M.: Parametric study of the decomposition of methane using a NiCu/Al2O3 catalyst in a fluidized bed reactor. Int. J. Hydrogen Energy 35, 9801–9809 (2010). doi:10.1016/j.ijhydene.2009.10.008

    Article  CAS  Google Scholar 

  8. Li, Y., Li, D., WANG, G.: Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catal. Today 162, 1–48 (2011). doi:10.1016/j.cattod.2010.12.042

    Article  CAS  Google Scholar 

  9. Figueiredo, J.L., Ribeiro, F.R.: Catálise Heterogênea. Fundação Calouste Gulbenkian, Lisboa (1989)

    Google Scholar 

  10. Norinaga, K., Huttinger, K.J.: Kinetics of surface reactions in carbon deposition from light hydrocarbons. Carbon 41, 1509–1514 (2003). doi:10.1016/S0008-6223(03)00097-6

    Article  CAS  Google Scholar 

  11. Paschoalino, M.P., Marcone, G.P.S., Jardim, W.F.: Os nanomateriais e a questão ambiental. Quim. Nova 33, 421–430 (2010). doi:10.1590/S0100-40422010000200033

    Article  CAS  Google Scholar 

  12. Schnorr, J.M., Swager, T.M.: Emerging applications of carbon nanotubes. Chem. Mater. 23, 646–657 (2011). doi:10.1021/cm102406h

    Article  CAS  Google Scholar 

  13. Zarbin, A.J.G.: Química de (nano)materiais. Quim. Nova 30(6), 1469–1479 (2007). doi:10.1590/S0100-40422007000600016

    Article  CAS  Google Scholar 

  14. Maccallini, E., Tsoufis, T., Policicchio, A., La Rosa, S., Caruso, T., Chiarello, G., Colavita, E., Formoso, V., Gournis, D., Agostino, R.G.: A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon 48, 3434–3445 (2010). doi:10.1016/j.carbon.2010.05.039

    Article  CAS  Google Scholar 

  15. Larson, AC., Von Dreele, RB.: General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748 (2000)

    Google Scholar 

  16. Toby, B.H.: A graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). doi:10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  17. Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum. FIZ, Karlsruhe (2007)

    Google Scholar 

  18. Shiono, T., Shiono, K., Miyamoto, K., Pezzotti, G.: Synthesis and characterization of MgAl2O4 spinel precursor from a heterogeneous Alkoxide solution containing fine MgO powder. J. Am. Ceram. Soc. 83, 235–237 (2000). doi:10.1111/j.1151-2916.2000.tb01180.x

    Article  CAS  Google Scholar 

  19. Monzón, A., Latorre, N., Ubieto, T., Royo, C., Romeo, E., Villacampa, J.I., Dussault, L., Dupin, J.C., Guimon, C., Montioux, M.: Improvement of activity and stability of Ni–Mg–Al catalysts by Cu addition during hydrogen production by catalytic decomposition of methane. Catal. Today 116, 264–270 (2006). doi:10.1016/j.cattod.2006.05.085

    Article  Google Scholar 

  20. Teixeira, V.G., Coutinho, F.M.B., Gomes, A.S.: Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Quim. Nova 24(6), 808–818 (2001). doi:10.1590/S0100-40422001000600019

    Article  Google Scholar 

  21. Silva, JB.: Caracterização de materiais catalíticos. Qualificação de Doutorado, Instituto Nacional de Pesquisas Espaciais (INPE). (2008)

    Google Scholar 

  22. Ozdemir, H., Oksuzomer, M.A.F., Gurkaynak, M.A.: Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition. Int. J. Hydrogen Energy 35, 12147–12160 (2010). doi:10.1016/j.ijhydene.2010.08.091

    Article  Google Scholar 

  23. Park, D.S., Li, Z., Devianto, H., Lee, H.: Characteristics of alkali-resistant Ni/MgAl2O4 catalyst for direct internal reforming molten carbonate fuel cell. Int. J. Hydrogen Energy 35, 5673–5680 (2010). doi:10.1016/j.ijhydene.2010.03.043

    Article  CAS  Google Scholar 

  24. Zeng, L., Wang, W., Lei, D., Liang, J., Zhao, H., Zhao, J., Kong, X.: High-field electron emission of carbon nanotubes grown on carbon fibers. Phys. B 403, 2662–2665 (2008). doi:10.1016/j.physb.2008.01.032

    Article  CAS  Google Scholar 

  25. Herbst, M.H., Macêdo, M.I.F., Rocco, A.M.: Tecnologia dos nanotubos de carbono: tendências e perspectivas de uma área multidisciplinar. Quim. Nova 27(6), 986–992 (2004). doi:10.1590/S0100-40422004000600025

    Article  CAS  Google Scholar 

  26. Fu, J., Huang, Y., Pan, Y., Zhu, Y., Huang, X., Tang, X.: An attempt to prepare carbon nanotubes by carbonizing polyphosphazene nanotubes with high carbon content. Mater. Lett. 62, 4130–4133 (2008). doi:10.1016/j.matlet.2008.06.020

    Article  CAS  Google Scholar 

  27. Almeida, R.M., Fajardo, H.V., Mezalira, D.Z., Nuernberg, G.B., Noda, L.K., Probst, L.F.D., Carreño, N.L.V.: Preparation and evaluation of porous nickel-alumina spheres as catalyst in the production of hydrogen from decomposition of methane. J. Mol. Catal. A: Chem. 259, 328–335 (2006). doi:10.1016/j.molcata.2006.07.044

    Article  Google Scholar 

  28. Chen, C.M., Dai, Y.M., Huang, J.G., Jehng, J.M.: Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon 44, 1808–1820 (2006). doi:10.1016/j.carbon.2005.12.043

    Article  CAS  Google Scholar 

  29. Musumeci, A., Silva, G., Martens, W., Waclawik, E., Frost, R.: Thermal decomposition and electron microscopy studies of single-walled carbon nanotubes. J. Therm. Anal. Calorim. 88(3), 885–891 (2007). doi:10.1007/s10973-006-7563-9

    Article  CAS  Google Scholar 

  30. Ramesh, B.P., Blau, W.J., Tyagi, P.K., Misra, D.S., Ali, N., Gracio, J., Cabral, G., Titus, E.: Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. Thin Solid Films 494, 128–132 (2006). doi:10.1016/j.tsf.2005.08.220

    Article  CAS  Google Scholar 

  31. Suriani, A.B., Azira, A.A., Nik, S.F., Nor, R.M., Rusop, M.: Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater. Lett. 63, 2704–2706 (2009). doi:10.1016/j.matlet.2009.09.048

    Article  CAS  Google Scholar 

  32. Das, N., Dalai, A., Mohammadzadeh, J.S.S., Adjaye, J.: The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44, 2236–2245 (2006). doi:10.1016/j.carbon.2006.02.040

    Article  CAS  Google Scholar 

  33. Zarabadi-Poor, P., Badiei, A., Yousefi, A.A., Fahlman, B.D., Abbasi, A.: Catalytic chemical vapour deposition of carbon nanotubes using Fe-doped alumina catalysts. Catal. Today 150, 100–106 (2010). doi:10.1016/j.cattod.2009.06.019

    Article  CAS  Google Scholar 

  34. Hsieh, C., Lin, J., Wei, J.: Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes. Int. J. Hydrogen Energy 34, 685–693 (2009). doi:10.1016/j.ijhydene.2008.11.008

    Article  CAS  Google Scholar 

  35. Zhou, M., Lin, G., Zhang, H.: Pt Catalyst Supported on Multiwalled Carbon Nanotubes for Hydrogenation-Dearomatization of Toluene. Chin. J. Catal. 28(3), 210–216 (2007). doi:10.1016/S1872-2067(07)60020-5

    Article  CAS  Google Scholar 

  36. Guevara, J.C., Wang, J.A., Chen, L.F., Valenzuela, M.A., Salas, P., García-Ruiz, A., Toledo, A., Cortes-Jácome, M.A., Angeles-Chavez, C., Novaro, O.: Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. Int. J. Hydrogen Energy 35, 3509 (2010). doi:10.1016/j.ijhydene.2010.01.068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universidade Federal de Santa Catarina (UFSC) for access to facilities including LCME, LDRX and LabMat, and to the Brazilian government agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nuernberg, G.B., Probst, L.F.D., Moreira, M.A., Campos, C.E.M. (2013). Performance of Ni/MgAl2O4 Catalyst Obtained by a Metal-Chitosan Complex Method in Methane Decomposition Reaction with Production of Carbon Nanotubes. In: Avellaneda, C. (eds) NanoCarbon 2011. Carbon Nanostructures, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31960-0_3

Download citation

Publish with us

Policies and ethics