Skip to main content

Learning Compact Markov Logic Networks with Decision Trees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7207))

Abstract

Markov Logic Networks (MLNs) are a prominent model class that generalizes both first-order logic and undirected graphical models (Markov networks). The qualitative component of an MLN is a set of clauses and the quantitative component is a set of clause weights. Generative MLNs model the joint distribution of relationships and attributes. A state-of-the-art structure learning method is the moralization approach: learn a 1st-order Bayes net, then convert it to conjunctive MLN clauses. The moralization approach takes advantage of the high-quality inference algorithms for MLNs and their ability to handle cyclic dependencies. A weakness of the moralization approach is that it leads to an unnecessarily large number of clauses. In this paper we show that using decision trees to represent conditional probabilities in the Bayes net is an effective remedy that leads to much more compact MLN structures. The accuracy of predictions is competitive with the unpruned model and in many cases superior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational learning. In: [16]

    Google Scholar 

  2. Kok, S., Summer, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domingos, P.: The Alchemy system for statistical relational AI. Technical report, University of Washington (2009)

    Google Scholar 

  3. Khosravi, H., Schulte, O., Man, T., Xu, X., Bina, B.: Structure learning for Markov logic networks with many descriptive attributes. In: Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI), pp. 487–493 (2010)

    Google Scholar 

  4. Kersting, K., de Raedt, L.: Bayesian logic programming: Theory and tool. In: [16], ch. 10, pp. 291–318

    Google Scholar 

  5. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in bayesian networks. In: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pp. 115–123. Citeseer (1996)

    Google Scholar 

  6. Fierens, D., Ramon, J., Blockeel, H., Bruynooghe, M.: A comparison of pruning criteria for probability trees. Machine Learning 78, 251–285 (2010)

    Article  Google Scholar 

  7. Kok, S., Domingos, P.: Learning markov logic networks using structural motifs. In: Fürnkranz, J., Joachims, T. (eds.) ICML, pp. 551–558. Omni Press (2010)

    Google Scholar 

  8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)

    Google Scholar 

  9. Provost, F.J., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52, 199–215 (2003)

    Article  MATH  Google Scholar 

  10. Zhang, H., Su, J.: Conditional Independence Trees. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 513–524. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 7. AAAI Press, Menlo Park (1996)

    Google Scholar 

  12. Dzeroski, S.: Inductive logic programming in a nutshell. In: [16]

    Google Scholar 

  13. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101, 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Neville, J., Jensen, D.: Relational dependency networks. Journal of Machine Learning Research 8, 653–692 (2007)

    MATH  Google Scholar 

  15. Schulte, O.: A tractable pseudo-likelihood function for bayes nets applied to relational data. In: Proceedings of SIAM Conference on Data Mining (SIAM SDM), pp. 462–473 (2011)

    Google Scholar 

  16. Getoor, L., Tasker, B.: Introduction to statistical relational learning. MIT Press (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khosravi, H., Schulte, O., Hu, J., Gao, T. (2012). Learning Compact Markov Logic Networks with Decision Trees. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2011. Lecture Notes in Computer Science(), vol 7207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31951-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31951-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31950-1

  • Online ISBN: 978-3-642-31951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics