Advertisement

Comparison of Upward and Downward Generalizations in CF-Induction

  • Yoshitaka Yamamoto
  • Katsumi Inoue
  • Koji Iwanuma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7207)

Abstract

CF-induction is a sound and complete procedure for finding hypotheses in full clausal theories. It is based on the principle of Inverse Entailment (IE), and consists of two procedures: construction of a bridge theory and generalization of it. There are two possible ways to realize the generalization task in CF-induction. One uses a single deductive operator, called γ-operator, and the other uses a recently proposed form of inverse subsumption. Whereas both are known to retain the completeness of CF-induction, their logical relationship and empirical features have not been clarified yet. In this paper, we show their equivalence property and clarify the difference on their search strategies, which often leads to significant features on their obtained hypotheses.

Keywords

inverse entailment CF-induction generalization inverse subsumption γ-operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, T.S., Oliveira, A.P., Nielsen, J.: Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Systems Biology 3, 7 (2009), doi:10.1186/1752-0509-3-7CrossRefGoogle Scholar
  2. 2.
    Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discrete Applied Mathematics 156, 2035–2049 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Inoue, K.: Induction as consequence finding. Machine Learning 55(2), 109–135 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56(2-3), 301–353 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kimber, T., Broda, K., Russo, A.: Induction on Failure: Learning Connected Horn Theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 169–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)CrossRefGoogle Scholar
  7. 7.
    Muggleton, S.H., Buntine, W.L.: Machine invention of first-order predicates by inverting resolution. In: Proc. of the 5th Int. Conf. on Machine Learning, pp. 339–352 (1988)Google Scholar
  8. 8.
    Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: A Consequence Finding System for Advanced Reasoning. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 257–263. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Ray, O., Broda, K., Russo, A.: Hybrid Abductive Inductive Learning: A Generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Ray, O., Inoue, K.: Mode-Directed Inverse Entailment for Full Clausal Theories. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 225–238. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rymon, R.: An SE-tree based prime implicant generation algorithm. Annals of Mathematics and Artificial Intelligence, 351–366 (1994)Google Scholar
  13. 13.
    Uno, T.: A practical fast algorithm for enumerating minimal set coverings. IPSJ SIG Notes (29), 9–16 (2002)Google Scholar
  14. 14.
    Westergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L., Nielsen, J.: A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnology and Bioengineering 96, 134–145 (2006)CrossRefGoogle Scholar
  15. 15.
    Yamamoto, A.: Hypothesis finding based on upward refinement of residue hypotheses. Theoretical Computer Science 298, 5–19 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Yamamoto, Y., Ray, O., Inoue, K.: Towards a Logical Reconstruction of CF-Induction. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 330–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Yamamoto, Y., Inoue, K., Iwanuma, K.: Hypothesis enumeration by CF-induction. In: Proc. of the 6th Workshop on Learning with Logics and Logics for Learning, pp. 80–87 (2009)Google Scholar
  18. 18.
    Yamamoto, Y., Inoue, K., Iwanuma, K.: Inverse subsumption for complete explanatory induction. Machine Learning 86(1), 115–139 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoshitaka Yamamoto
    • 1
  • Katsumi Inoue
    • 2
  • Koji Iwanuma
    • 1
  1. 1.University of YamanashiKofu-shiJapan
  2. 2.National Institute of InformaticsChiyoda-kuJapan

Personalised recommendations